206 resultados para Labor efficiency
Resumo:
High-efficiency white electrolurninescence from a single polymer is achieved by enhancing the electroluminescence efficiency and effecting a red-shift in the emission spectrum of the blue emissive species. A single-layer device of the resultant polymer exhibits a higher luminous efficiency than the nonmodified species (12.8 cd A(-1), see figure) and an external quantum efficiency of 5.4 % with CIE coordinates of (0.31,0.36), exemplifying the success of the reported methodology.
Resumo:
By doping a fluorescent dye in the emissive layer, we realized high efficient red organic light-emitting diodes (OLEDs) based on a europium complex. The OLEDs realized by this method showed pure red emission at 612 nm with a full width at half maximum Of 3 nm. The Commission International de L'Eclairage Coordination keeps approximately the same as the emission of pure Eu3+. The maximum brightness and EL efficiency reached 2450 cd/m(2) at 20 V and 9.0 cd/A (6.0 lm/w) at a current density of 0.012 mA/cm(2), respectively. At the brightness of 100 cd/m(2), the current efficiency reached 4.4 cd/A.
Resumo:
An organic light-emitting diode fabricated by doping a europium, complex tris(dibiphenoylmethane)-mono (phenanthroline)-europium (Eu(DBPM)(3) (Phen)) into polymer poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene) and poly(N-carbazole) was realized by spin coating. Comparison with other europium complexes, due to the existence of a larger spectral overlap between Eu(DBPM)(3)(Phen) and poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4phenylene), a high efficiency red emission was achieved. The device showed a turn-on voltage of 5.2 V The maximum efficiency reached 0.47 cd/A at luminance of 50 cd/m(2). The maximum luminance can reach 150 cd/m(2) at 95 mA/cm(2). To the best of our knowledge, this is one of the best results based on europium complexes by spin-casting method.
Resumo:
We demonstrate high efficiency red organic light-emitting diodes (OLEDs) based on a planar microcavity comprised of a dielectric mirror and a metal Mirror. The microcavity devices emitted red light at a peak wavelength of 610 nm with a full width at half maximum (FWHM) of 25 nm in the forward direction, and an enhancement of about 1.3 factor in electroluminescent (EL) efficiency has been experimentally achieved with respect to the conventional noncavity devices. For microcavity devices with the structure of distributed Bragg reflectors (DBR)/indium-tin-oxide(ITO)/V2O5/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine(NPB)/4-(dicy-anome-thylene)-2-t-butyl-6(1,1,7,7-tetrame-thyljulolidyl-9-enyl)-4H-pyran(DCJTB):tris(8-hydroxyquinoline) aluminium (Alq(3))/Alq(3)/LiF/Al, the maximum brightness arrived at 37000 cd/m(2) at a current density of 460.0 mA/cm(2), and the current efficiency and power efficiency reach 13.7 cd/A at a current density of 0.23 mA/cm(2) and 13.3 lm/W respectively.
Resumo:
A multilayer white organic light-emitting diode (OLED) with high efficiency was present. The luminescent layer was composed of a red dye 4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped into NN-bis-(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4-4-diamine (NPB) layer and a blue-emitting 9,10-bis-(beta-naphthyl)-anthrene (DNA) layer. Red and blue emission, respectively, from DCJTB:NPB and DNA can be obtained by effectively controlling the thicknesses of DCJTB:NPB and DNA layers, thus a stable white light emission was achieved. The device turned on at 3.5 V, and the maximum luminance reached 16000 cd/m(2) at 21 V. The maximum current efficiency and power efficiency were 13.6 cd/A and 5.5 lm/W, respectively.
Resumo:
To enhance the photoluminescence and electroluminescence efficiency, light-emitting polymers with energy transferring chromophores including N,N,N'N'-phenylene-diamine, naphthalene-imide, oxadiazole, meta-phenylene vinylene are designed and synthesized.
Resumo:
A PPV derivative containing bulky tetraphenylmethane side chains was synthesised. Its optical properties were examined. Compared to its parent PPV polymer, its UV-Vis absorption and PL showed less red-shift from solution to film, its PL showed much less concentration quenching effect and higher efficiency, its EL device showed 9-fold enhanced efficiency. These improvements were attributed to weakened inter-chain interaction caused by the tetraphenylmethane group.
Resumo:
Electrical and optical properties of organic light-emitting diodes (OLEDs) with a stepwise graded bipolar transport emissive layer for a better control of charge transport and recombination are presented. The graded bipolar transport layer was formed by co-evaporating a hole-transporting material N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4(')-diamine (NPB) and an electron-transporting/emissive material tris-(8-hydroxyquinoline) aluminum (Alq(3)) in steps, where each step has a different concentration ratio of NPB to Alq(3). Compared to a conventional heterojunction OLED, electroluminescence efficiency was enhanced by a factor of more than 1.5, whereas the turn-on voltage remained unchanged in the graded structure.
Resumo:
In this paper, we study the effects of electrical annealing at different voltages on the performance of organic light-emitting diodes. The light-emitting diodes studied here are single-layer devices based on a conjugated dendrimer doped with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as the emissive layer. We find that these devices can be annealed electrically by applying a voltage. This process reduces the turn-on voltage and enhances the brightness and efficiency. We obtained an external electroluminescence quantum efficiency of 0.07% photon/electron and a brightness of 2900 cd m(-2) after 12.4 V electrical annealing, which are about 6 times and 9 times higher than un-annealing devices, respectively. The improved luminance and efficiency are attributed to the presence of a space charge field near the electrodes caused by charging of traps.
Resumo:
Photoluminescence (PL) quantum efficiency is a key issue in designing successful light-emitting polymer systems. Exciton relaxation is strongly affected by exciton quenching at nonradiative trapping centers and the formation of excimers. These factors reduce the PL quantum yield of light-emitting polymers. In this work, we have systematically investigated the effects of exciton confinement on the PL quantum yield of an oligomer, polymer, and alternating block copolymer (ABC) PPV system. Time-resolved and temperature-dependent luminescence studies have been performed. The ABC design effectively confine photoexcitations within the chromophores, preventing exciton migration and excimer formation. An unusually high (PL) quantum yield (above 90%) in the solid state is reported for the alternating block copolymer PPV, as compared to that of similar to 30% of the polymer and oligomer model compounds. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A series of novel PPV derivative copolymers with good solubility in common organic solvents were synthesized. The emitting color of these copolymers could range from red to blue by adjusting the structures and the compositions of monomers. Investigation on their optical properties showed that the PL quantum efficiency could be increased by energy transfer and conjugation reduction. The PL quantum efficiency of most green/blue copolymer films on slide glass was higher than 80%.
Resumo:
To obtain high efficiency luminescent materials, the system Al2O3-B2O3 containing Ce3+ and Tb3+ ions with variation of B2O3-content, has been prepared by Al2O3, H3BO3, CeO2 and Tb4O7 under reducing atmosphere at 1250(j)ae. It is notable that the brightness of the sample with appropriate composition is similar to that of commercial phosphorous containing Ce3+ and Tb3+, indicating that a new high efficency green luminescent material was obtained with appropriate B2O3-content.
Resumo:
Three kinds of PPV-based copolymers were synthesized and characterized. Their luminescent properties were investigated and discussed by PL spectrum, and time-dependence luminescent spectrum in film and solution stare. The results show that in the range of our study, the PL intensity and lifetime of luminescent decay increase with the increasing length of flexible segments and the solution diluting, indicating the tendency of the increase of luminescent efficiency.
Resumo:
A soluble polymer emitting green color with high efficiency was synthesized. Bright green electroluminescence devices, both single layer and multilayer, were fabricated. The luminous efficiency was improved dramatically. Carrier injection from the electrodes to the emissive layer and concomitant green electroluminescence from the emissive layer were observed. A luminance of 920 cd/m(2) and luminous efficiency of 5.35 1m/W were achieved at a drive voltage of 15 V for the multilayer device. (C) 1997 Elsevier Science S.A.