274 resultados para Iron doping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of dopamine (DA) molecules on gold and their interactions with Fe3+ were studied by a microcantilever in a flow cell. The microcantilever bent toward the Au side with the adsorption of DA due to the change Of Surface stress induced by the intermolecular hydrogen bonds of DA or the charge transfer effect between adsorbates and the Substrate. The interaction process between DA adsorbates and Fe3+ was revealed by the deflection curves of microcantilever. As indicated by the appearance of a variation during the decline of curves, two steps were observed in the curve at relative high concentrations of Fe3+. In this case, Fe3+ reacted with DA molecules only in the outer layers and the complexes removed with solution. Then Fe3+ reacted further with DA molecules forming the surface complex in the first layer next to the gold. At this stage, the stability Of Surface complexes was time dependent, i.e., unstable initially and stable finally. This may be due to the surface complexes change from mono-dentate to bi-dentate complexes. In another case, i.e., at relative low concentration of Fe3+, only the first step was observed as indicated by the absence of a variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes Fe-II to Fe-III, and then electrochemical reduction of Fe-III therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new iron(III) coordination compound exhibiting a two-step spin-transition behavior with a remarkably wide [HS-LS] plateau of about 45 K has been synthesized from a hydrazino Schiff-base ligand with an N,N,O donor set, namely 2-methoxy-6-(pyridine-2-ylhydrazonomethyl) phenol (Hmph). The single-crystal X-ray structure of the coordination compound {[Fe(mph)(2)](ClO4)(MeOH)(0.5)(H2O)(0.5)}(2) (1) determined at 150 K reveals the presence of two slightly different iron(III) centers in pseudo-octahedral environments generated by two deprotonated tridentate mph ligands. The presence of hydrogen bonding interactions, instigated by the well-designed ligand, may justify the occurrence of the abrupt transitions. 1 has been characterized by temperature-dependent magnetic susceptibility measurements, EPR spectroscopy, differential scanning calorimetry, and Fe-51 Mossbauer spectroscopy, which all confirm the occurrence of a two-step transition. In addition, the iron(III) species in the high-spin state has been trapped and characterized by rapid cooling EPR studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ phosphors were prepared by solid-state reaction process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) as well as lifetimes, was utilized to characterize the resulting phosphors. Under the excitation of ultraviolet light, the Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ show the characteristic emissions of Eu3+ (D-5(0)-F-7(1,2,3) transitions dominated by D-5(0)-F-7(1) at 593 nm) and Dy3+ (F-4(9/2)-H-6(15/2),(13/2) transitions dominated by F-4(9/2)-H-6(15/2) at 494 nm), respectively. The incorporation of Li+ ions into the Ba2GdNbO6: Eu3+/Dy3+ phosphors has enhanced the PL intensities depending on the doping concentration of Li+, and the highest emission was obtained in Ba2Gd0.9NbO6: 0.10Eu(3+), 0.01Li(+) and Ba2Gd0.95NbO6: 0.05Dy(3+), 0.07Li(+), respectively. An energy level diagram was proposed to explain the luminescence process in the phosphors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blue emitting GdNbO4: Bi3+ powder phosphors for field emission displays were prepared by a solid state reaction. Both photoluminescence and cathodoluminescence properties of the materials were investigated. GdNbO4 itself shows only a very weak luminescence in the blue spectral region. By doping Bi3+ in GdNbO4, the luminescence intensity was improved greatly. The emission spectrum of the GdNbO4: Bi3+ consists of a broad band with maximum at 445 nm (lifetime = 0.74 mu s; CIE chromaticity coordinates: x = 0.1519 and y = 0. 1196) for both UV and low voltage (1-7 kV) cathode ray excitation. In GdNbO4:Bi3+ phosphors, the energy transfer from NbO43- to activator Bi3+ occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated high-efficiency red organic light-emitting diodes (OLEDs) employing a europium complex, Eu (III) tris( thenoyltrifluoroacetone) 3,4,7,8-tetramethyl-1,10-phenanthroline (Eu(TTA)(3)(Tmphen)), as an emitter and a blue electrophosphorescent complex, Iridium ( III) bis[4,6-di-fluorophenyl-pyridinato-N,C-2] picolinate (FIrpic), as an assistant dopant codoped into 4,4-N, N-dicarbazole-biphenyl (CBP) host as an emissive layer. A pure red electroluminescence (EL) only from Eu3+ ions at 612 nm with a full width at half maximum of 3 nm was observed and the EL efficiency was significantly enhanced. The maximum EL efficiency reached 7.9 cd A(-1) at 0.01 mA cm(-2) current density, which is enhanced by 2.8 times compared with electrophosphorescence-undoped devices. The large improvements are attributed to energy transfer assistance effects of FIrpic, indicating a promising method for obtaining efficient red OLEDs based on rare-earth complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well-known red fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB) was codoped with an electron transport organic molecule tris(8-hydroxyquinohne) aluminum (Alq3) in a host matrix of polystyrene (PS), and the amplified spontaneous emission (ASE) was studied by optically pumping. It was found that the ASE performance was significantly improved by the introduction of Alq3. The Alq3:DCJTB:PS blending thin films showed a low threshold (2.4 mu J/pulse) and a high net gain coefficient (109.95 cm(-1)) compared with the pure DCJTB:PS system (threshold of 15.2 mu J/pulse and gain of 35.94 cm(-1)). The improvement of the ASE performance was considered to be attributable to the effective Foster energy transfer from Alq(3) to DCJTB. Our results demonstrate that the Alq(3):DCJTB could be a promising candidate as gain medium for red organic diode lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye, 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and a green fluorescent dye, (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinohzin-11-one) (C545T) codoped polystyrene (PS) as the active medium were studied. It was found that the performance of ASE is greatly improved due to the introduction of C545T. By optimizing the concentrations of C545T and DCJTB in PS, an ASE threshold of 0.016 mJ pulse(-1), net gain of 52.71 cm(-1), and loss of 11.7 cm(-1) were obtained. The efficient Forster energy transfer from C545T to DCJTB was used to explain the improvement of the ASE performance in the coguest system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid solutions of Ce1-xNdxO2-x/2 (0.05 <= x <= 0.2) and (Ce1-xNdx)(0.95)MO0.05O2-delta (0.05 <= x <= 0.2) have been synthesized by a modified sol-gel method. Both materials have very low content of SiO2 (similar to 27 ppm). Their structures and ionic conductivities were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and electrochemical impedance spectroscopy (M). The XRD patterns indicate that these materials are single phases with a cubic fluorite structure. The powders calcined at 300 degrees C with a crystal size of 5.7 nm have good sinterability, and the relative density could reach above 96% after being sintered at 1450 degrees C. With the addition Of MoO3, the sintering temperature could be decreased to 1250 degrees C. Impedance spectroscopy measurement in the temperature range of 250-800 degrees C indicates that a sharp increase of conductivity is observed when a small amount of Nd2O3 is added into ceria, of which Ce0.85Nd0.15O1.925 (15NDC) shows the highest conductivity. With the addition of a small amount Of MoO3, the grain boundary conductivity of 15NDC at 600 degrees C increases from 2.56 S m(-1) to 5.62 S m(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrothermal reactions of metavanadate and divalent iron salts in the presence of nitrogen-donor chelating ligands yield the complex [Fe(C10H8N2)(3)](2)[V4O12].10H(2)O, which consists of one centrosymmetric eight-membered ring [V4O12](4-) anion cluster, formed by four VO4 tetrahedra sharing vertices, two discrete octahedral [Fe(C10H8N2)(3)](2+) cations, formed by three 2,2'-bipyridyl ligands coordinated to Fe-II, and ten water molecules of solvation. The anion and coordination cations are isolated and form anion and cation layers, respectively. In the anion layers, these anions and water molecules of solvation are linked to each other, in a two-dimensional motif, through hydrogen-bonding interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe(II) pyridinebisimine complexes activated with trialkylaluminium or modified methylaluminoxane (MMAO) as catalysts were employed for the polymerization of methyl methacrylate. Polymer yields, activities and polymer molecular weights as well as molecular weight distributions can be controlled over a wide range by the variation of the structures of the Fe(II) pyridinebisimine complexes and the reaction parameters such as Al/Fe molar ratio, monomer/catalyst molar ratio, monomer concentration, reaction temperature and time applied to the polymerization of methyl methacrylate. Under optimum condition, the catalytic activity of Fe(II) complex is of up to 74.5 kg(polym)/mol(Fe)h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first and second generation carbosilane dendrimers with silicon hydride terminated were synthesized, and then reacted with bis(imino)pyridyl containing allyl [4-CH2==CHCH2-2,6-(Pr2C6H3N)-Pr-i==CMe(C5H3N)MeC==N(2,6-'Pr2C6H3)], in the presence of H2PtCl6 as a hydrosilylation catalyst, to afford the first and second generation carbosilane supported ligands. Complexation reactions with FeCl(2)(.)4H(2)O give rise to iron-containing carbosilane dendrimers with FeCl2 moieties bound on the periphery. The metallodendrimers were used as catalyst precursors, activated with modified methylaluminoxane, for the polymerization of ethylene. In the case of low Al/Fe molar ratio, the metallodendrimers display much higher catalytic activity towards ethylene polymerization and produce much higher molecule weight polyethylenes than the corresponding single-nuclear complex under the same conditions.