185 resultados para Ion current density


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent hadronic transport model IBUU04, effects of the nuclear symmetry energy on the single and double pi(-)/pi(+) ratios in central reactions of Sn-132+Sn-124 and Sn-112+Sn-112 at a beam energy of 400 MeV/nucleon are studied. It is found that around the Coulomb peak of the single pi(-)/pi(+) ratio the double pi(-)/pi(+) ratio taken from the two isotopic reactions retains about the same sensitivity to the density dependence of nuclear symmetry energy. Because the double pi(-)/pi(+) ratio can significantly reduce the systematic errors, it is thus a more effective probe for the high-density behavior of the nuclear symmetry energy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the emission of pion in heavy-ion collisions in the region 1 A GeV as a probe of nuclear symmetry energy at supra-saturation densities is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6. Ska and SIB, and also for the cases of different stiffness of symmetry energy with the parameter SLy6. Preliminary results compared with the measured data by the FOPI Collaboration favor a hard symmetry energy of the potential term proportional to (rho/rho(0))(gamma s) with gamma(s) = 2. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The equation of the potential-current curve for the ion transfer across the liquid/liquid interface during the linear current scanning has been derived theoretically. A method to calculate the kinetics parameters for the ion transfer by the way of linear current scanning is presented. The transfer of TPAs~+ ions, which is a typical basic electrolyte ion usually used in liquld/liquid interface electrochemistry, was practically investigated at the water/nitrobenzene interface.