198 resultados para High temperature effects
Resumo:
Endohedral metallofullerene Gd@C-2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Gd@C-2n for 2n from 70 to 96 were effectively extracted by toluene at high-temperature and under high-pressure condition. Gd@C-82, Gd@C-74 were considered to be fairly stable and soluble metallofullerene species.
Resumo:
A higher yield synthesis for lanthanofullerenes has been studied by activating the La2O3 containing graphite rod in situ and back-burning the graphite-rich cathode deposit. La@C-2n are efficiently extracted by high temperature toluene (180 degrees C) in a closed vessel, in which a new species La@C-74 is added to the members of the soluble lanthanofullerenes. The toluene extraction is first characterized by desorption electron impact mass spectrometry. The influence of anode components on synthesis is also analyzed by the XRD technique. Furthermore, the EPR spectra change with temperature are also studied. The assignment of octet II peaks in EPR is also discussed.
Resumo:
A strong strain-rate and temperature dependence was observed for the fracture toughness of phenolphthalein polyether ketone (PEK-C). Two separate crack-blunting mechanisms have been proposed to account for the fracture-toughness data. The first mechanism involves thermal blunting due to adiabatic heating at the crack tip for the high temperatures studied. In the high-temperature range, thermal blunting increases the fracture toughness corresponding to an effectively higher test temperature. However, in the low-temperature range, the adiabatic temperature rise is insufficient to cause softening and Jic increases with increasing temperature owing to viscoelastic losses associated with the p-relaxation there. The second mechanism involves plastic blunting due to shear yield/flow processes at the crack tip and this takes place at slow strain testing of the single-edge notched bending (SENB) samples. The temperature and strain-rate dependence of the plastic zone size may also be responsible for the temperature and strain-rate dependence of fracture toughness.
Resumo:
The phosphors MMgF(4)(M = Ca, Sr, Ba) doped with samarium ions are synthesized in different atmospheres using solid phase reaction at high temperature. Samarium has been first stabilized in the divalent state in SrMgF4 and BaMgF4 matrices. Effects of matrices on the valent state of samarium ions are briefly discussed.
Resumo:
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 mu mol photons m(-2) s(-1) was lethal to dim-light (7-10 mu mol photons m(-2) s(-1)) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim-light adapted vegetative gametophytes were shown to be able tolerate as high as 420 mu mol photons m(-2) s(-1) if the irradiance was steadily increased from dim light levels (7-10 mu mol photons m(-2) s(-1)) to 90, 180 and finally 420 mu mol photons m(-2) s(-1), respectively, at a minimum of 1-3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site-specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.
Resumo:
Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are Suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. fit this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble Culture were assessed at a temperature range of 10 similar to 30 degrees C. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30 degrees C for 4 h without apparent decline in the optimal chlorophyll fluorescence yield. While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25 degrees C for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 similar to 26 degrees C) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield. Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30 degrees C, similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36 degrees N was proposed according to these basic measurements.
Resumo:
The cold-water subtidal brown alga Laminaria japonica has been commercially fanned in the Far East and has been on top of all marine-fanned species in terms of farming area and annual output worldwide. The successful trials of transplantation of young sporophytes from the north to the south in winter along the Chinese coast in the 1950s led to the spreading of cultivation activities down to a latitude of 25-26 degrees N. Up to today, nearly 50% of the annual output of this farmed alga, as a cold-water species, comes from the sub-tropical south in China. The demand to have high-temperature-tolerant strains/ecotypes in farming area calls for a practical method to judge and select the desired parental plants for breeding programs and for seedling production. In this paper, we report our results on using chlorophyll fluorescence measurement and short-term growth performance in tank culture to estimate the temperature tolerance of offspring from two populations, Fujian Farmed Population (FFP) sampled from Fujian province (latitude: 25-26 degrees N) in subtropical area and Qingdao Wild Population (QWP) sampled from Qingdao (latitude: 36 degrees N). Contrary to what has been usually thought, the results revealed that offspring from Qingdao wild population in the north showed better performance both in short-term growth and survival rates and in optimal quantum efficiency (F-v/F-m) when exposed to higher temperature (20-25 degrees C). This result was further confirmed by fluorescence quenching analysis. QWP distributed along the southern distribution limit at a latitude of 36 degrees N in the Pacific west coast is thus taken as a more ideal one than the fanned population in subtropical region as a source of parental plants for breeding high-temperature-tolerant varieties. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
海带根是一种治疗糖尿病的民间中药,在沿海地区有很长的民间用药历史。食用海带根能够有效降低糖尿病患者的血糖,起到治疗作用。本文目的在于发现海带根中抗糖尿病的天然活性物质并分析它们在糖尿病治疗中的靶点;进一步开发一种低价且无毒副作用的化学类新药或中药新药。 α-glucosidase和 PTP-1B是II型糖尿病的两个重要靶点,海带根提取物能同时作用于这两个靶点。通过抑制这两种酶,降低血糖水平,85%乙醇粗提物对两种酶的IC50分别为1589ug/ml、IC50 1271ug/ml。乙酸乙酯相和石油醚相分别抑制α-glucosidase和 PTP-1B,IC50分别为380ug/ml和220ug/ml。因此以α-glucosidase和 PTP-1B的抑制活性为导向,用天然产物化学的方法对活性成分进行追踪分离,寻找单体活性物质进而鉴定其结构。由于乙酸乙酯相具有α-glucosidase抑制活性,用硅胶柱层析(石油醚:丙酮5:1、1:1),(二氯甲烷:甲醇60:1、20:1、5:1),凝胶柱层析Sephadex LH20(二氯甲烷:甲醇1:1),HPLC (80% 甲醇-水),对α-glucosidase抑制剂进行分离,得到组分IC50 为3.6ug/ml。用质谱仪和核磁共振确定结构。 生物活性测定结果表明α-glucosidase和 PTP-1B是两种不同的物质,分别位于乙酸乙酯相和石油醚相。光照实验和高温实验表明抑制α-glucosidase的活性成分对光照和温度敏感。光照48h或者50℃ 12h而且对α-glucosidase的抑制活性显著降低,TLC检测并用FeCl3显色初步表明抑制α-glucosidase的活性成分可能是多数酚类物质。动物实验显示在1450ug/kg剂量下,乙酸乙酯相能够显著降低糖尿病小鼠血糖,与阴性对照组差异极显著(P<0.01)。表明,海带根提取物在体内和体外均呈现出抗糖尿病活性,是一种潜在的抗糖尿病药物。
Resumo:
Uptake and release of carbon in grassland ecosystems is very critical to the global carbon balance and carbon storage. In this study, the dynamics of net ecosystem CO2 exchange (FNEE) of two grassland ecosystems were observed continuously using the eddy covariance technique during the growing season of 2003. One is the alpine shrub on the Tibet Plateau, and the other is the sem-arid Leymus chinensis steppe in Inner Mongolia of China. It was found that the FNEE of both ecosystems was significantly depressed under high solar radiation. Comprehensive analysis indicates that the depression of FNEE in the L. chinensis steppe was the results of decreased plant photosynthesis and increased ecosystem respiration (R-eco) under high temperature. Soil water stress in addition to the high atmospheric demand under the strong radiation was the primary factor limiting the stomatal conductance. In contrast, the depression of FNEE in the alpine shrub was closely related to the effects of temperature on both photosynthesis and ecosystem respiration, coupled with the reduction of plant photosynthesis due to partial stomatal closure under high temperature at mid-day. The R,c of the alpine shrub was sensitive to soil temperature during high turbulence (u* > 0.2 m s(-1)) but its FNEE decreased markedly when the temperature was higher than the optimal value of about 12 degrees C. Such low optimal temperature contrasted the optimal value (about 20 degrees C) for the steppe, and was likely due to the acclimation of most alpine plants to the long-term low temperature on the Tibet Plateau. We inferred that water stress was the primary factor causing depression of the FNEE in the semi-arid steppe ecosystem, while relative high temperature under strong solar radiation was the main reason for the decrease of FNEE in the alpine shrub. This study implies that different grassland ecosystems may respond differently to climate change in the future. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
The main research area of this thesis is the Western Depression in the Liaohe Basin. Based on the drilling core observation and mud logging data, the features of the mantle–derived fluids and their effects on oil/gas generation in the Western Depression of the Liaohe Basin,was studied with comprehensive methods of volcanic petrology, sediment petrology, fluid geochemistry, sedimentlogy, and structural geology, and use of polarized light microscope, fluorescence microscope, electron microscope, fluid and melt inclusion test, and isotopic test of nature gas etc. The observation of drill cores in study area and other studies reveal that the main passageway of the volcanic eruption in the Cenozoic was the Xibaqian-Gaosheng fault, and the volcanic rocks of each stage were distributed around it. Mantle-derived fluid which affected on oil/gas generation formed later than the volcanic spew and those fluids entered into the depression through the Taian-Dawa fault and the Central fault. The volatile fraction analysis of the melt inclusion reveals the presence of two kinds of mantle fluids; they are hydrogen-rich fluid and carbon dioxide-rich fluid. These the two kinds of fluids were mainly distributed in olivine and pyroxene respectively. The hydrothermal veins development have multiple stages, from high temperature quartz vein to low temperature calcite vein and analcime vein, in which the fluid inclusion extremity component are methane and carbon dioxide, which indicate that when mantle-derived fluids ascended and entered into the basin, most of these fluids interacted with the organic matter in the basin even though some of these entered into atmosphere. The present isotopic test of the nature gas reveals the high 3He/4He value between the region of the Taian-Dawa fault and the Central fault, which also imply the feature of origin in mantle. This phenomenon indicates that the Mesozoic basement faults and the main Cenozoic faults had connected crust and the mantle during the basin evolution, so the mantle derived fluids could enter the basin along those faults. The main source rocks of the ES3 and ES4 members of the Shahejie Formation began to expel hydrocarbon at the end period of the ES1 member of the Shahejie Formation, and reached its peak during the period of the Dongying Formation deposition. During these periods, the mantle derived-fluids entered the basin constantly along the main faults, and supplied lots of hydrogen for hydrocarbon generation. Though the volcanic rocks and the mantle-derived fluids in the Eastern Depression were more developed than in the Western Depression, the source rocks and the deep fluids were not interacted better than the Western Depression because of the affection of structural evolution. In the Eocene, the Eastern Depression did not deposit the ES4 member of the Shahejie Formation, furthermore, the mantle-fluid formed in the Fangshengpao stage escaped to the atmosphere, which confined the later stage hydrocarbon generation capability.
Resumo:
Granulites from Huangtuling in the North Dabie metamorphic core complex in eastern China preserve rare mineralogical and mineral chemical evidence for multistage metamorphism related to Paleoproterozoic metamorphic processes, Triassic continental subduction-collision and Cretaceous collapse of the Dabieshan Orogen. Six stages of metamorphism are established, based on detailed mineralogical and petrological studies: (I) amphibolite facies (6.3–7.0 kbar, 520–550 °C); (II) high-pressure/high-temperature granulite facies (12–15.5 kbar, 920–980 °C); (III) cooling and decompression (4.8–6.0 kbar, 630-700 °C); (IV) medium-pressure granulite facies (7.7–9.0 kbar, 690–790 °C); (V) low-pressure/high-temperature granulite facies (4.0–4.7 kbar, 860–920 °C); (VI) retrograde greenschist facies overprint (1–2 kbar, 340–370 °C). The P–T history derived in this study and existing geochronological data indicate that the Huangtuling granulite records two cycles of orogenic crustal thickening events. The earlier three stages of metamorphism define a clockwise P–T path, implying crustal thickening and thinning events, possibly related to the assembly and breakup of the Columbia Supercontinent ca. 2000 Ma. Stage IV metamorphism indicates another crustal thickening event, which is attributed to the Triassic subduction/collision between the Yangtze and Sino–Korean Cratons. The dry lower crustal granulite persisted metastable during the Triassic subduction/collision due to lack of hydrous fluid and deformation. Stage V metamorphism records the Cretaceous collapse of the Dabieshan Orogen,possibly due to asthenosphere upwelling or removal of the lithospheric mantle resulting in heating of the granulite and partial melting of the North Dabie metamorphic core complex. Comparison of the Huangtuling granulite in North Dabie and the high-pressure (HP)–ultrahigh-pressure (UHP) metamorphic rocks in South Dabie indicates that the subducted upper (South Dabie) and lower (North Dabie) continental crusts underwent contrasting tectonometamorphic evolution during continental subduction–collision and orogenic collapse. High-pressure granulites are generally characterized by the absence of orthopyroxene. However, the Huangtuling felsic granulite rarely preserves the high-pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K-feldspar + quartz. To investigate the effects of bulk rock composition on the stability of orthopyroxene-bearing, high-pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, we constructed a series of P–T–X pseudosections based on the melt-reintegrated composition of the Huangtuling felsic high-pressure granulite. Our calculations demonstrate that the orthopyroxene-bearing, high-pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. Our study also reveals that the XAl values in the residual felsic–metapelitic, high-pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene-bearing high-pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.
Resumo:
Terrestrial carbon pool mainly consists of three parts: the active carbon pool of the vegetation,soil carbon pools and the lithosphere carbon pool of less activity. Under natural conditions,vegetation carbon pools,soil carbon exchange with atmospheric carbon pool directly,the lithosphere participate in the global carbon cycle by weathering Our research have coverd the soil organic carbon density,plant biomass (carbon density),plant net primary productivity of past 40 ka,and the magnetic susceptibility,grain size,weathering of silicate carbon consumption of past 140 ka. This study has achieved a number of conclusions as shown below. 1 Silicate weathering CO2 consumption in the long-term fluctuations with a similar deep-sea δ18O record,demonstate that it not only can be used as one of the instructions of terrestrial carbon pool,even can be used as indicators of global environmental change; silicate weathering CO2 consumption and susceptibility shown a clear relationship between lag or lead at different times,it maybe lies on how the climate change. 2 Soil carbon pools in line with the global climate on long-term,but the relationship between soil carbon density and climate change was not obvious in short-term change,generally lags behind the changes in other climatic proxies. 3 Carbon density of vegetation and other proxy indicators of climate have good consistency. In the study period,perform the cycle of glacial and interglacial completely,but because of the ancient vegetation of accurate information is difficult to obtain,it did not reflect rapid response to climate change. 4 Cooling events is conducive to soil organic carbon accumulation but not conducive to weathering and vegetation growth. High temperature environment is not conducive to the accumulation of soil organic carbon. 5 In the deglacial time from the last glacial maximum to the Holocene,weathering carbon consumption seems earlier than vegetation and soil organic carbon in the fluctuant increase.Does it imply that the effects of silicate weathering is an important factor to the global carbon cycle and global climate change? It is worth further research.
Resumo:
This thesis focuses on the present-day thermal field features, evolution and their connections to hydrocarbon generation of the three continental margin basins-the Yinggehai (Yingge Sea), Qiongdongnan(southeast Qiong), and Pear River Mouth basins-in northern South China Sea, based on available data from drillings, loggings, seismic cross-sections, BHTs, thermal indicators (Ro%, inclusion, etc) and geopressure measurements. After studying of present-day distribution of geothermal field and thermal disturbance of fluid in the sedimentary strata, the author discovered that the distribution of gas fields in Yinggehai Basin are closely related to the distribution of anomalously high thermal gradient area, whereas it is not the case for the Pear River Mouse Basin. And detailed processing of the fluid inclusion data indicates that geothermal fluids activated frequently in this area, and they may mainly be derived upward from the overpressure and hydrocarbon-generating beds, 3000-4500 m in depth. Therefore, the abnormal gradients in sedimentary beds were mainly caused by the active geothermal fluids related to hydrocarbon migrating and accumulating in this area. Because of the effect of overpressure retarding on vitrinite reflectance, the thermal indicators for thermal history reconstruction should be assessed before put into use. Although some factors, such as different types of kerogen, heating ratio, activities of thermal fluids and overpressure, may have effects on the vitrinite reflectance, under the circumstance that thermal fluids and overpressure co-exist, overpressure retarding is dominant. And the depth and correction method of overpressure retarding were also determined in this paper. On the basis of reviewing the methods of thermal history studies as well as existing problems, the author believes that the combination of thermal-indicator-inversion and tectono-thermal modeling is an effective method of the thermal history reconstruction for sedimentary basins. Also, a software BaTherMod for modeling thermal history of basins was successfully developed in this work. The Yinggehai Basin has been active since Tertiary, and this was obviously due to its tectonic position-the plate transition zone. Under the background of high thermal flow, long-term quick subsidence and fluid activities were the main reasons that lead to high temperature and overpressure in this basin. The Zhujiangkou Basin, a Tertiary fault-basin within the circum-Pacific tectonic realm, was tectonically controlled by the motion of the Pacific Plate and resembles the other petroliferous basins in eastern China. This basin developed early, and characterized intensive extension in the early stage and weak activity in the later stage of its development. Whereas the Qiongdongnan Basin was in a weak extension early and intensity of extension increased gradually. The relative geographical locations and the extensional histories of three basins ilustrate that the northern continental margin of South China Sea spread from south to north. On the other hand, the Qiongdongnan and Yinggehai Basins may have been controlled by the same tectonic regime since later Tertiary, whereas the Zhujiangkou Basin was not meaningfully influenced. So, the tectono-thermal evolution character of the Qiongdonnan basin should be closely to the other two. It may be concluded that the three basins have been developed within the active continental margin since Tertiary, and the local lithosphere might undergo intensive extension-perhaps two or three times of episodic extension occurred. Extension lead to large tectonoc subsidence and extreme thick Tertiary sediments for hydrocarbon generation in the basins. In response to the periodic extension of the basins, the palaeothermal flow were also periodical. The three basins all have the characteristics of multi-phase thermal evolutions that is good for oil-gas generation. And the overpressure expands the depth range of oil-gas habitat, which is meaningful to petroleum exploration in this region.
Resumo:
In this paper, We analyzed the geological and geographical settings of dinosaurs extinction at the end of Cretaceous, especially the effect of the change of the elements contents on dinosaurs extinction. We studied basis on the two typical sections-Cretaceous-Paleocene boundary (Baishantou section (in Jiayin, Heilongjiang province of China) and Arkhara-Boguchan Coal Mine section (in Far East of Russian)) and Longgushan section (in Jiayin, Heilongjiang province of China) mainly. This work provided some evidences for forecasting the effects of global environmental change on bio-circle. The followings are the primary gains: According to the paleo-climate indexes (CaO/MgO,Sr/Ba) and the results of Factor Analysis, we found that there were similar climate in Baishantou section and Arkhara-Boguchan Coal Mine section near the K/E boundary, and both of them took on the trend of temperature declining and precipitation heightening after transitory high-temperature and drought. There are similar change and evlution rule of the elements contents near the boundary in the both sections (Baishantou section and Arkhara-Boguchan Coal Mine section). Both iron group elements and chalcophile elements appeared obvious abnormity. There are not visible correlation between the change of elements contents and climate indexes. This shows that the elements abnormity maybe came from the factors excluding climate or the factors were too many to conceal the influence of climate. --The result of cluster analysis showed that the boundary between BST3-8 and BST3-9 may be the K/E boundary of Baishantou section, and the top of twofold coal were the K/E boundary of Arkhara-Boguchan Coal Mine section which was consistent with accepted conclusion formerly. By contrast of elements contents in dinosaur bones and general organism, in surrounding rock and general sand stone, the regulation of the change of elements contents in dinosaur bones and surrounding rock, we confirmed that dinosaur extinction in Jiayin were relative with the high abnormities of Sr, Ba, Pb, Cr and the low abnormity of Zn, at least, it was them which speeded up dinosaurs extinction. After a series of analysis, we concluded that dinosaurs extinction of this areas tied up with the relative high background values of geo-chemical elements , paleo-climate and disaster incidents. First of all, high background values provided the necessary condition for the accumulation of the elements. Secondly, the drought climate adverse to the survival of dinosaurs, and led them to extinct gradually. finally, disaster incidents, the eruption of volcano or the collision of aerolites, made them exit this planet.
Resumo:
With the continually increase both in the amount of wastewater disposal and in the treatment rate, more and more sewage sludge has been produced. An economic estimate was taken on the different sewage sludge disposal and treatment technologies, and led to the conclusion that compost is an effective way to make sewage sludge harmless, stable and resourceable. Normally, there are several ways to treat sewage sludge, such as landfill, compost, incineration and so on. These technologies will cost 300-1000 Y per ton of sludge. Among those ways, landfill is the cheapest one and operates easily, however, it just postpones the pollution instead of eventually eliminating the pollution; The amount of the sludge will reduce dramatically after incineration, while incineration will take a very high investment in the beginning, at the same time, it's very hard to maintain running; Sewage sludge will be resourceful after composting treantment, thus makes up the treatment cost, makes composting is the most economical way. Compost production is safe when correctly used, compost is a important way to treat sewage sludge. Oxygen is an important control factor in aerobic composting that has great effects on temperature and microorganisms. The gas gathering and transfering system of an online oxygen monitoring system for composting were bettermented to prolong the monitoring system's running period. The oxygen concentration changes in various aerobic composting stage were studied, and conclusions came to that oxygen concentration changes much faster in the oxygen concentration increasing stage than that in the declining stage; the better the aerobic condition is, the sooner the monitoring system starts to work. The minimal oxygen concentration during a ventilation cycle often falls at the beginning, then ascends in the composting period; at the same time, oxygen concentration changes fast in the early composting stage(temperature increasing stage), much slower in the middle stage(continouns thermophilic stage),and seldom changes in the late composting stage(temperature declining stage). With the help of the oxygen realtime-online monitoring system, oxygen concentrations was measured. During the composting period, water contents was analyzed after sampled. It's found that water contents (WC) and Oxygen concentration can both influence the composting process, and the control rule varies in the various composting stages. Essentially, the rule that water and oxygen control the composting process comes from water counterchecks the oxygen transferring to the composting substrate. The most influential factor to the WC and to the oxygen is the components in the composting pile. In the temperature increasing stage, seldom microorganisms exist in the composting pile with low activity, thus oxygen can meet with microorganisms' need, and WC is the dominant factor. In the high temperature (continouns thermophilic) stage, composting process is controlled by WC and oxygen, essentially by WC, at the same time, their influence somehow is not remarkable. In the temperature declining stage, WC and oxygen influence the composting process little. It's also found that the composting process will differ even if under the same components, thus to equably mix the components can avoid WC focusing in some place and let the composting pile to be aerobic. In one sentence, aerobic state is the most important factor in the composting process, suitable bulking material will be useful to the composting control.