308 resultados para HfO2 coating material
Resumo:
In this paper, we report the fabrication of Si-based double hetero-epitaxial SOI materials Si/gamma-Al2O3/Si. First, single crystalline gamma-Al2O3 (100) insulator films were grown epitaxially on Si(100) by LPCVD, and then, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a CVD method similar to silicon on sapphire (SOS) epitaxial growth. The Si/gamma-Al2O3 (100)/Si(100) SOI materials are characterized in detail by RHEED, XRD and AES techniques. The results demonstrate that the device-quality novel SOI materials Si/gamma-Al2O3 (100)/Si(100) has been fabricated successfully and can be used for application of MOS device.
Resumo:
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.
Resumo:
Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.
Resumo:
A broadly tunable and high-power grating-coupled external cavity laser with a tuning range of more than 200 nm and a similar to 200-mW maximum output power was realized, by utilizing a gain device with the chirped multiple quantum-dot (QD) active layers and bent waveguide structure. The chirped QD active medium, which consists of QD layers with InGaAs strain-reducing layers different in thickness, is beneficial to the broadening of the material gain spectrum. The bent waveguide structure and facet antireflection coating are both effective for the suppression of inner-cavity lasing under large injection current.