268 resultados para HPLC-ESI-MSn
Resumo:
A pre-column derivatization method for the sensitive determination of aliphatic amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by HPLC with fluorescence detection and APCI/NIS identification in positive-ion mode has been developed. The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by the 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent, BCEOC, that could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M + H](+) with APCI/MS in positive-ion mode. The collision induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 264.1, m/z 246.0 and m/z 218.1, corresponding to the cleavages of CH2CH2O-CO, CH2CH2-OCO, and N-CH2CH2O bonds. Studies on derivatization conditions demonstrated that excellent derivatization yields close to 100% were observed with a 3 to 4-fold molar reagent excess in acetonitrile solvent, in the presence of borate buffer (pH 9.0) at 40 degrees C for 10 min. In addition, the detection responses for BCEOC derivatives were compared with those obtained with CEOC and FMOC as labeling reagents. The ratios I-BCEOC/I-CEOC and I-BCEOC/I-FMOC were, respectively, 1.40-2.76 and 1.36-2.92 for fluorescence responses (here, I was the relative fluorescence intensity). Separation of the amine derivatives had been optimized on an Eclipse XDB-C-8 column. Detection limits calculated from an 0.10 pmol injection, at a signal-to-noise ratio of 3, were 18.65-38.82 fmol (injection volume 10 mu L for fluorescence detection. The relative standard deviations for intraday determination (n = 6) of standard amine derivatives (50 pmol) were 0.0063-0.037% for retention times and 3.36-6.93% for peak areas. The mean intra-and inter-assay precision for all amines were <5.4% and 5.8%, respectively. The recoveries of amines ranged from 96 to 113%. Excellent linear responses were observed with correlation coefficients of >0.9994. The established method provided a simple and highly sensitive technique for the quantitative analysis of trace amounts of aliphatic amines from biological and natural environmental samples.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance, liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+ H](+) under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate, (FMOC-Cl) as labeling reagents. The ratios I-BCEC/I-BCEOC = 1.94-2.17 and I-BCEC/I-FMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were < 3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of > 0.9996. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and specific reversed-phase high performance liquid chromatography (RP-HPLC) method with diode array detection (DAD) was established for the quantitative determination of the nine active components, namely, swertiamarin (SWM, 1), mangiferin (MA, 2), gentipicroside (GE, 3), sweroside (SWO, 4), isoorientin (IS, 5), swertisin (SWS, 6), swertianolin (SWN, 7), 7-O-[alpha-L-rhamnopyranosyl-1 -> 2)-beta-D-xylopyranosyl]-1,8-dihydroxy-3-methoxyxanthone (RX, 8), and bellidifolin (BE, 9) used as the external standard, in Tibetan folk medicinal species Swertia franchetiana. Based on the baseline chromatographic separation of most components from the methanolic extract of Swertia franchetiana on a reversed-phase Eclipse XDB-C8 column with water-acetonitrile-formic acid as mobile phase, the nine components were identified by comparison with standard samples and qualified by using the external standard method with DAD at 254 nm. The correlation coefficients of all the calibration curves were found to be higher than 0.9980. The relative standard deviations (RSDs) of the peak areas and retention times for the nine standards were less than 2.07% and 2.86%, respectively.
Resumo:
A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.
Resumo:
A sensitive method for the determination of long-chain fatty acids (LCFAs) (>C20) using 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4.5-f]-9,10-phenanthrene (TSPP) as tagging reagent with fluorescence detection and identification with post-column APCI/MS has been developed. The LCFAs in bryophyte plant samples were obtained based on distillation extraction with 1: 1 (v/v) chloroform/methanol as extracting solvent. TSPP could easily and quickly label LCFAs at 90 degrees C in the presence of K2CO3 catalyst in DMF. Eleven free LCFAs from the extracts of bryophyte plants were sensitively determined. Maximal labeling yields close to 100% were observed with a five-fold excess of molar reagent. Separation of the derivatized fatty acids exhibited a good baseline resolution in combination with a gradient elution on a reversed-phase Eclipse XDB-C-8 column. Calculated detection limits from 1.0 pmol injection, at a signal-to-noise ratio of 3, were 26.19-76.67 fmol. Excellent linear responses were observed with coefficients of >0.9996. Good compositional data were obtained from the analysis of the extracted LCFAs containing as little as 0.2 g of bryophyte plant samples. Therefore, the facile TSPP derivatization coupled with HPLC/APCI/MS analysis allowed the development of a highly sensitive method for the quantitation of trace levels of LCFAs from biological and natural environmental samples. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A simple and sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection and mass spectrometric identification has been developed for analysis of 30 long-chain and short-chain free Fatty acids (FFAs). The fatty acids were derivatized to their esters with 1-[2-(p-toluenesulfonate)ethyl]-2-phenylimidazole-[4,5-f]-9,10-phenanthrene (TSPP) in N,N-dimethylformamide (DMF) at 90 degrees C with anhydrous K2CO3 as catalyst. A mixture Of C-1-C-30 fatty acids was completely separated within 60 min by gradient elution on a reversed-phase C-8 column. Qualitative identification of the acids was performed by atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) in positive-ion mode. The fluorescence excitation and emission wavelengths were 260 and 380 nm, respectively. Quantitative determination of the 30 acids in two Tibetan medicines Gentiana straminea and G. dahurica was performed. The results indicated that the medicines contained many FFAs. Linear correlation coefficients for the FFA derivatives were > 0.9991. Relative standard deviations (RSDs, n = 6) for the fatty acid derivatives were < 3%. Detection limits (at a signal-to-noise ratio of 3:1) were 3.1-38 fmol. When the fatty acid derivatives were determined in the two real samples results were satisfactory and the sensitivity and reproducibility of the method were good.
Resumo:
A sensitive method for the determination of free fatty acids using 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-dimidazol-1-yl) ethyl-p-toluenesuIfonate (ANITS) as tagging reagent with fluorescence detection has been developed. ANITS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90 degrees C for 40 min in N,N-dimethylformamide solvent. From the extracts of rape bee pollen samples, 20 free fatty acids were sensitively determined. Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C8 column by HPLC in conjunction with gradient elution. The corresponding derivatives were identified by post-column APCI/MS in positive-ion detection mode. ANITS-fatty acid derivatives gave an intense molecular ion peak at mlz [M+H](+); with MS/MS analysis, the collision-induced dissociation spectra of m/z [M+H](+) produced the specific fragment ions at mlz [M-345](+) and mlz 345.0 (here, m/z 345 is the core structural moiety of the ANITS molecule). The fluorescence excitation and emission wavelengths of the derivatives were lambda(ex) = 250 nm and lambda(em) = 512 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are > 0.9999. Detection limits, at a signal-to-noise ratio of 3 : 1, are 24.76-98.79 fmol for the labeled fatty acids.
Resumo:
A simple and sensitive method for evaluating the chemical compositions of protein amino acids, including cystine (Cys)(2) and tryptophane (Try) has been developed, based on the use of a sensitive labeling reagent 2-(11H-benzo[alpha]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) along with fluorescence detection. The chromophore of the 1,2-benzo-3,4-dihydrocarbazole-ethyl chloroformate (BCEOC-Cl) molecule was replaced with the 2-(11H-benzo[alpha]-carbazol-11-yl) ethyl functional group, yielding the sensitive fluorescence molecule BCEC-Cl. The new reagent BCEC-Cl could then be substituted for labeling reagents commonly used in amino acid derivatization. The BCEC-amino acid derivatives exhibited very high detection sensitivities, particularly in the cases of (Cys)(2) and Try, which cannot be determined using traditional labeling reagents such as 9-fluorenyl methylchloroformate (FMOC-Cl) and ortho-phthaldialdehyde (OPA). The fluorescence detection intensities for the BCEC derivatives were compared to those obtained when using FMOC-Cl and BCEOC-Cl as labeling reagents. The ratios I (BCEC)/I (BCEOC) = 1.17-3.57, I (BCEC)/I (FMOC) = 1.13-8.21, and UVBCEC/UVBCEOC = 1.67-4.90 (where I is the fluorescence intensity and UV is the ultraviolet absorbance). Derivative separation was optimized on a Hypersil BDS C-18 column. The detection limits calculated from 1.0 pmol injections, at a signal-to-noise ratio of 3, ranged from 7.2 fmol for Try to 8.4 fmol for (Cys)(2). Excellent linear responses were observed, with coefficients of > 0.9994. When coupled with high-performance liquid chromatography, the method established here allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids including (Cys)(2) and Try from bee-collected pollen (bee pollen) samples.
Resumo:
This paper describes the simultaneous determination of allantoin, quercetin, and 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (MTCCA) in Nitraria tangutorum Bobr seed by HPLC-APCI-MS and CE (capillary electrophoresis) methods. The final optimized chromatographic conditions were investigated in a reversed-phase Eclipse XDB-C8 column (150 x 4.6 mm, 5 mu m). A seventeen-minute gradient elution, (A: aqueous acetonitrile 20% (v/v); B: aqueous acetonitrile 60% (v/v); C: pure acetonitrile 100%) at a flow rate of 1.0 mL/min was selected for the separation of three natural products with diode array detection (DAD) at 220 nm. A CE experiment was carried out in a fused silica capillary with 32 mmol/L boric acid (pH 10), 32 mmol/L SDS and acetonitrile (10.0%, v/v). The applied potential and temperature was, respectively, set at 19 kV and 25 degrees C. After development, the validation was performed in parallel for HPLC and CE, with the same standards and sample to avoid differences due to the manipulation. The validation parameters of both techniques were adequate for the intended purpose.
Resumo:
A simple and sensitive method for the determination of free fatty acids (FFAs) using acridone-9-ethyl-p-toluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB-C-8 column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at lambda(ex) 404 and lambda(em) 440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post-column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positive-ion detection mode. Nineteen FFAs from the extract of Lomatogonium rotatum are sensitively determined. The results indicate that the plant Lomatogonium rotatum is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C-14, C-16, and C-18. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are > 0.9989, and detection limits (at signal-to-noise of 3: 1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are < 2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of Lomatogonium rotatum with satisfactory results.
Resumo:
A rapid and sensitive liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) assay for the determination of five pharmacologically active compounds (PAC) extracted from the traditional Chinese medicine, Rhodiola , namely salidroside, tyrosol, rhodionin, gallic acid, and ethyl gallate has been developed. In this method, PAC could be baseline separated and detected with DAD at 275 nm. The validation of the method, including sensitivity, linearity, repeatability, and recovery, was examined. The linear calibration curves were acquired with correlation coefficient >0.999 and the limits of detection LOD (at a signal-to-noise ratio=3:1) were between 0.058 and 1.500 mu mol/L. It was found, that the amounts of PAC varied with different species of Rhodiola . The established method is rapid and reproducible for the separation of five natural pharmacologically active compounds from extracts of Rhodiola with satisfactory results.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel bonded phase for reversed-phase HPLC was synthesized in two steps. Octylamine was first reacted with beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (beta -ECTS) and then the intermediate product was coupled onto porous silica. The prepared packing was characterized by elemental analysis, solid-state C-13 NMR and Fourier transform infrared (FT-IR). Chromatographic evaluations were carried out by using a mixture of organic compounds including acidic, basic and neutral analytes and methanol-water as binary mobile phase. The results showed that the stationary phase has excellent chromatographic properties and is resistant to hydrolysis between pH = 2 similar to 8. It can be used efficiently for the separation of basic compounds.