209 resultados para Growth and remodeling
Resumo:
Based on the research of juvenile (2, 3, 4 months) growth and survival of three populations of two different geographic areas in Chlamys farreri from Russian and China and their F, hybrids derived from Chinese cultural population (CC) female x Russian population (RW) male, Chinese wild population (CW) female x Russian population (RW) male, Russian population (RW) female x Chinese wild population (CW) the study of the medium-term (6, 8, 10, 12 months) growth and development of Chlamys farreri was carried out. The four determined results indicated that there existed different extent heterosis (3% similar to 52 %) for the growth in three types of F-1 hybrids, and the offspring derived from CC female X Rmale had a stronger heterosis among the crosses at the medium-term; the uptrend among traits are wet weight > shell width > shell length > shell height, Chinese cultural population could be recognized as excellent parent, and seasonal variations influence very much on the daily increment and growth rate of each trait of Chlamys farreri and it is only able to survive and could barely grow in winter (6 similar to 8 months), but grows fast in temperate season (10similar to12 months).
Resumo:
Effect of temperature and irradiance on growth and reproduction of Enteromorpha prolifera that bloomed offshore along the Qingdao coast in summer 2008, was studied. It was showed that E. prolifera propagated mainly asexually with specific growth rate (SGR) of 10.47 at 25A degrees C/40 mu mol m(-2)s(-1). Under this condition, gametes with two flagellate formed and released in 5 days. At the beginning of the development, the unicell gamete divided into two cells with heteropolarity, and then the apical cell developed into thalli primordial cells, whereas the basal cell developed into rhizoid primordial cells. In 8-day culture, the monoplast gamete developed into juvenile germling of 240 mu m in length. Unreleased gametes can develop directly within the alga body. E. prolifera could either reproduce through lateral branching or fragmenting except apomixis revealed by Microscopic observation. On aged tissue of E. prolifera, although the degraded pigments partially remained in faded algal filaments, numerous vegetative cells could still divide actively in the algal tissues.
Resumo:
The economic feasibility of algal mass culture for biodiesel production is enhanced by the increase in biomass productivity and storage lipids. Effect of iron on growth and lipid accumulation in marine microalgae Chlorella vulgaris were investigated. In experiment I, supplementing the growth media with chelated FeCl3 in the late growth phase increased the final cell density but did not induce lipid accumulation in cells. In experiment II, cells in the late-exponential growth phase were collected by centrifugation and re-inoculated into new media supplemented with five levels of Fe3+ concentration. Total lipid content in cultures supplemented with 1.2 x 10(-5) mol L-1 FeCl3 was up to 56.6% biomass by dry weight and was 3-7-fold that in other media supplemented with lower iron concentration. Moreover, a simple and rapid method determining the lipid accumulation in C. vulgaris with spectrofluorimetry was developed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The cold-water subtidal brown alga Laminaria japonica has been commercially fanned in the Far East and has been on top of all marine-fanned species in terms of farming area and annual output worldwide. The successful trials of transplantation of young sporophytes from the north to the south in winter along the Chinese coast in the 1950s led to the spreading of cultivation activities down to a latitude of 25-26 degrees N. Up to today, nearly 50% of the annual output of this farmed alga, as a cold-water species, comes from the sub-tropical south in China. The demand to have high-temperature-tolerant strains/ecotypes in farming area calls for a practical method to judge and select the desired parental plants for breeding programs and for seedling production. In this paper, we report our results on using chlorophyll fluorescence measurement and short-term growth performance in tank culture to estimate the temperature tolerance of offspring from two populations, Fujian Farmed Population (FFP) sampled from Fujian province (latitude: 25-26 degrees N) in subtropical area and Qingdao Wild Population (QWP) sampled from Qingdao (latitude: 36 degrees N). Contrary to what has been usually thought, the results revealed that offspring from Qingdao wild population in the north showed better performance both in short-term growth and survival rates and in optimal quantum efficiency (F-v/F-m) when exposed to higher temperature (20-25 degrees C). This result was further confirmed by fluorescence quenching analysis. QWP distributed along the southern distribution limit at a latitude of 36 degrees N in the Pacific west coast is thus taken as a more ideal one than the fanned population in subtropical region as a source of parental plants for breeding high-temperature-tolerant varieties. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Circadian growth rhythm of the juvenile sporophyte of the brown alga Undaria pirznatifida was measured with the computer-aided image analysis system in constant florescent white light under constant temperature (10 degrees C). The growth rhythm persisted for 4 d in constant light with a free-running period of 25. 6 h. Egg release from filamentous gametophytes pre-cultured in the light - dark regime was evaluated for six consecutive days at fixed time intervals in constant white light and 12 h light per day. Egg release rhythm persisted for 3 d in both regimes, indicating the endogenous nature. Temporal scale of egg release and gametogenesis in 18, 16, 12 and 8 h light per day were evaluated respectively using vegetatively propagated filamentous gametophytes. Egg release occurred 2 h after the onset of dark phase and peaked at midnight. Evaluation of the rates of oogonium formation, egg release or fertilization revealed no significant differences in four light-dark regimes, indicating; the great plasticity of sexual reproduction. No photoperiodic effect in gametogenesis in terms of oogonium formation and egg release was found, but fertilization in short days was significantly higher than in long days. Results of this investigation further confirmed the general occurrence of circadian rhythms in inter-tidal seaweed species.
Resumo:
Effects of food availability on larval growth and survival of Meretrix meretrix were studied in two experiments by feeding the larvae with different algae diets and by starving the larvae for different periods of time. Newly hatched larvae of M meretrix were fed with five different marine microalgae species, singly and in various mixtures. Best growth was with Isochrysis galbana as a single species diet. Nutritional value of the other single species diets was in the order of Dunaliella sp.> Phaeodactylum tricornutum > Platymonas subcordiformis > Pavlova viridis. Of the mixtures tested, 50% I. galbana/50% Dunaliella sp., 50% I. galbana/50% P tricornutum, and 50% 1 galbana/50% P subcordiformis, supported growth and metamorphosis equivalent to those of the I. galbana control. At 25 degrees C, larvae of M meretrix were deprived of food for various days to study the growth compensation from the outset of development. The results showed that M meretrix larvae could survive long feeding delays, and even reach metamorphosis without food added, although starvation had significant effects on growth. These results suggested that M meretrix larvae had the capacity to survive 'starvation' using alternative sources of energy. It also showed that growth, survival and metamorphosis of M meretrix were affected by many factors besides food quality and quantity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fenneropenaeus chinensis is confined to the Yellow Sea and Bohai Sea in China and the West Coast of the Korean Peninsula. Intra- and intercross populations were produced between Rushany (YP) and Korean (KN) populations. Seven traits were recorded. The heterosis of hybrids was computed and comparison between treatments was performed by ANOVA. At the fourth month after post-larvae, six indexes of growth trait and viability showed a range of heterosis, ranging from 0.514% to 14.950%. At the fifth month after post-larvae, six indexes of growth trait and viability ranged from -9.000% to 19.090%. The negative heterosis was observed in CL, HST and viability. The heterosis of KN female xYP male tended generally to increase as the age of the Chinese shrimp increased while the heterosis of YP female xKN male tended to decrease. The results indicated that the viability of reciprocal hybrids were not significantly different (P > 0.05) from their parents during the experiment. The result of ANOVA indicated that the F1 hybrids were significantly different (P < 0.05) in WST and TW at the fourth month. The multiple comparisons of LSD test indicated that the hybrids of YP female xKN male were significantly different (P < 0.05) from their parents in TW. The hybrids of YP female xKN male were significantly different (P < 0.05) from the other three combinations in WST. At the fifth months, the F1 hybrids had significant difference (P < 0.05) in body weight while other traits showed no significant differences (P > 0.05) from their parents. The multiple comparisons of LSD test indicated that the hybrids of KN female xYP male were significantly different (P < 0.05) from the KN parents in TW. The results indicate that in experimental conditions, the F-1 hybrids created from two populations of Chinese shrimp showed a certain level of heterosis for growth performance and viability. The crossing scheme may improve growth performance and viability in Chinese shrimp, but the improvement may be limited because effective crossbreeding requires the maintenance of pure, preferably inbred, lines and possibly involves specialized sire and dam lines. Therefore, the exploitation of heterosis through single crossbreeding in Chinese shrimp is of limited utility in practical commercial shrimp aquaculture in spite of the potential of significant heterosis. The crossbreeding of different populations can be applied in the establishment of base populations.
Resumo:
With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society
Resumo:
The effects of feeding level on growth, retention efficiency, faeces production and energy partitioning of redlip mullet were studied. A practical diet was used and fed at six levels from starvation, 1%, 2%, 3%, 4% of body weight (BW) to satiation for 3 weeks. The temperature was kept at 24 +/- 1 degrees C. Reducing the feeding amount resulted in significantly lower weight gain, and retention efficiency was significantly affected by feeding levels and attained the maximum at maximum feeding intake. Feeding 2% BW was the minimum required for fish to maintain growth. Fish carcass composition under different feeding levels could be divided into three groups: (1) starvation and FL1; (2) FL2 and FL3 and (3) FL4 and satiation, with significant differences among the groups but no differences in the groups except that ash content remained at constant value. Body composition of fish of group 2 was close to initial fish. The thermal-unit coefficient was 0.0381 at satiation, and significantly increased with increasing feeding levels. In order to accurately estimate basal metabolism (HeE), another trial on the relationship between HeE (kJ) and BW (g) was carried out. An exponential curve as HeE=0.1255BW(0.8386) explained this relationship. Intake energy (IE) increased from 11.30 to 63.08 kJ per fish, matching with different feeding levels. Energy allocated to growth of IE decreased with reducing feeding amount. There was a linear relationship between metabolism energy and retention energy in percentage.
Resumo:
We conducted 28 dilution experiments during August-September 2007 to investigate the coupling of growth and microzooplankton grazing rates among ultraphytoplankton populations and the phytoplankton community and their responses to habitat variability (open-ocean oligotrophy, eddy-induced upwelling, and the Mekong River plume) in the western South China Sea. At the community level, standing stocks, growth, and grazing rates were strongly and positively correlated, and were related to the higher abundance of larger phytoplankton cells (diatoms) at stations with elevated chlorophyll concentration. Phytoplankton growth rates were highest (> 2 d(-1)) within an eastward offshore jet at 13 degrees N and at a station influenced by the river plume. Among ultraphytoplankton populations, Prochlorococcus dominated the more oceanic and oligotrophic stations characterized by generally lower biomass and phytoplankton community growth, whereas Synechococcus became more important in mesotrophic areas (eddies, offshore jet, and river plume). The shift to Synechococcus dominance reflected, in part, its higher growth rates (0.87 +/- 0.45 d(-1)) compared to Prochlorococcus (0.65 +/- 0.29 d(-1)) or picophytoeukaryotes (0.54 +/- 0.50 d(-1)). However, close coupling of microbial mortality rates via common predators is seen to play a major role in driving the dominance transition as a replacement of Prochlorococcus, rather than an overprinting of its steady-state standing stock.
Resumo:
To investigate the effects of enhanced nutrient loading in estuarine waters on phytoplankton growth and microzooplankton grazing, we conducted monthly dilution experiments at 2 stations in Hong Kong coastal waters with contrasting trophic conditions. The western estuarine station (WE) near the Pearl River estuary is strongly influenced by freshwater discharge, while the eastern oceanic station (EO) is mostly affected by the South China Sea. Growth rates of phytoplankton were often limited by nutrients at EO, while nutrient limitation of phytoplankton growth seldom Occurred at WE due to the high level of nutrients delivered by the Pearl River, especially in the summer rainy season. Higher chlorophyll a, microzooplankton biomass, phytoplankton growth and microzooplankton grazing rates were found at WE than at EO. However, the increase in chlorophyll greatly exceeded the increase in phytoplankton growth rate, reflecting different response relationships to nutrient availability. Strong seasonality was observed at both stations, with temperature being an important factor affecting both phytoplankton growth and microzooplankton grazing rates. Picophytoplankton, especially Synechococcus, also exhibited great seasonality at EO, with summer abundances being 2 or 3 orders of magnitude higher than those during winter, Our results confirm that in eutrophic coastal environments, microzooplankton grazing is a dominant loss pathway for phytoplankton, accounting for the utilization of >50%, of primary production on average.
Resumo:
In order to assess the toxicity of heavy metals on the early development of Meretrix meretrix, the effects of mercury (Hg), cadmium (Cd) and lead (Pb) on embryogenesis, survival, growth and metamorphosis of larvae were investigated. The EC50 for embryogenesis was 5.4 mu g l(-1) for Hg, 1014 mu g l(-1) for Cd and 297 mu g l(-1) for Pb, respectively. The 96 h LC50 for D-shaped larvae was 14.0 mu g l(-1) for Hg, 68 mu g l(-1) for Cd and 353 mu g l(-1) for Pb, respectively. Growth was significantly retarded at 18.5 mu g l(-1) (0.1 mu M) for Hg, 104 mu g l(-1) (1 mu M) for Cd and 197 mu g l(-1) (1 mu M) for Pb, respectively. The EC50 for metamorphosis, similar to 48 h LC50, was higher than 96 h LC50. Our results indicate that the early development of M. meretrix is highly sensitive to heavy metals and can be used as a test organism for ecotoxicology bioassays in temperate and subtropical regions.
Resumo:
A series of experiments were conducted to identify the factors that affected the growth and survival of the settling flounder larvae Paralichthys olivaceus. Settling larvae 24 days after hatching (DAH) were reared in 10-l experimental tanks up to 40 DAH, and two of the following factors were changed as controlled factors in each experiment: light regime (24L:0D or 12L:12D), prey density (1500, 3000, or 5000 Artemia l(-1)), shelter (sand or no sand) and stocking density (5, 10, or 15 fish l(-1)). Early settling larvae (24-35 DAH) experienced little mortality (less than 10% of the overall mortality) that was not significantly affected by above factors. In contrast, late settling larvae (36-40 DAH) suffered high cannibalistic mortality which was significantly influenced by each of the above factors. Larvae experienced significantly lower mortality at 10 fish l(-1) level than at other densities. Larvae at 15 fish l(-1) level had higher mortality than at 5 fish l(-1) when all other factors were identical. Larvae at 3000 and 5000 Artemia l(-1) treatments survived significantly better than at 1500 Artemia l(-1), but no significant differences in larval mortality were found between the two higher densities. Larvae suffered higher mortality at low prey density or at the absence of sand when they were exposed to longer photoperiod. Low stocking density significantly improved the growth of the settling larvae. The average daily instantaneous growth rate (G) at 5 and 15 fish l(-1) treatments were 0.050 and 0.034, with the coefficient of variation (CV) in final length at 16.4 and 23.5, respectively. Daily instantaneous growth rate increased significantly from 0.033 in the 1500 Artemia l(-1) to 0.041 and 0.045 in the 3000 and 5000 Artennia l(-1), respectively, but no significant difference in larval growth existed between the two higher prey densities. These findings suggested that the optimal prey density for growth and survival of the settling flounder larvae at a stocking density of 5 - 15 fish l(-1) was around 3000 Artemia l(-1) . Larvae that were exposed to 24L showed 20% increase in growth ( G = 0.046, CV = 18.7) than those exposed to 12L ( G = 0.037, CV = 20.5). Longer exposure to light significantly improved larval growth, provided sufficient food was available. Sand substrate did not show significant effects on larval growth, possibly because the larvae spent most of the time swimming or feeding in the water column during this stage. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of the timing of first feeding (0, 1 and 2 days after yolk exhaustion) and starvation on the point-of-no-return (PNR), survival and growth of laboratory-reared rock bream larvae were studied under controlled conditions. Larvae began to feed exogenously at 3 days after hatching (dah) and reached PNR on 54 h after yolk exhaustion at 22 +/- 1.5 degrees C. Larvae growth was significantly affected by the time of first exogenous feeding. The growth of 0 day delayed first feeding larvae was obviously faster than those of the other delayed first feeding larvae (P<0.05) whether at 7 dab (SL=3.40 mm, SGR=5.7, CV=4.0) or at 15 dah (SL=4.85 mm, SGR=6.1, CV=8.2) with a more uniform size distribution. Survival of 0 day delayed first feeding larvae and I day delayed first feeding larvae was 13% and 8% at the end of experiment, respectively, while no larvae survived up to 7 dah for 2 days delayed first feeding larvae and unfed larvae. Food resulted in a progressive deterioration of the larval digestive system and atrophy of skeletal muscle fibre. The ratios of head length to SL (standard length), body height to SL and eye diameter to SL were the most sensitive morphometric indices to detect the effects of fasting on larval condition. Present results showed that the combination of morphological and morphometric variables could be used to evaluate the nutritional condition of rock bream larvae. In order to avoid the potential mortality and gain better development, survival and growth in industrial production, the rock bream larvae must establish successful first feeding within 2 days after yolk exhaustion. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The growth and survival of the Zhikong scallop Chlamys farreri suspended in deep water of Haizhou Bay were studied from July 2007 to June 2008, and the biodeposition method was used to estimate the clearance rate of C. farreri under field conditions. Results showed that the scallop grew fast during all the culture time, with the exception of summer. The condition index of the scallop increased with time and reached the highest value in spring of the second year. The survival of scallops was 60.8 +/- A 3.9% at the end of this study, mortality occurring mainly during the summer and autumn of the first year. The clearance rate fluctuated obviously with season,with the highest value in September 2007, and the lowest value in March 2008. Factors accounting for variations in growth and clearance rate of scallops are also discussed.