235 resultados para Escória de aciaria LD
Resumo:
The Mg-8Gd-2Y-1Nd-0.3Zn-0.6Zr (wt.%) alloy sheet was prepared by hot extrusion technique, and the structure and mechanical properties of the extruded alloy were investigated. The results show that the alloy in different states is mainly composed of alpha-Mg solid solution and secondary phases of Mg5RE and Mg24RE5 (RE = Gd, Y and Nd). At aging temperatures from 200 degrees C to 300 degrees C the alloy exhibits obvious age-hardening response. Great improvement of mechanical properties is observed in the peak-aged state alloy (aged at 200 degrees C for 60 h), the ultimate tensile strength (sigma(b)), tensile yield strength (sigma(0.2)) and elongation (epsilon) are 376 MPa, 270 MPa and 14.2% at room temperature (RT), and 206 MPa. 153 MPa and 25.4% at 300 degrees C, respectively, the alloy exhibits high thermal stability.
Resumo:
Mg-4Al-4Nd-0.5Zn-0.3Mn alloy was prepared by metal mould casting method. Microstructure, aging behavior, mechanical properties and fracture morphology of the alloy were investigated. The results showed that alpha-Mg, Al-11 Nd-3, Al2Nd and Mg-32(Al,Zn)(49) phases were the main phases of the as-cast alloy. And the long rod-like Al-11 Nd-3 phase was decomposed to granular Al2Nd through T6 heat treatment. The tensile strength was also enhanced by T6 treatment. The yield strength was increased by 17% and 21% at RT and 150 degrees C, respectively. It was mainly because that the precipitates were refined through T6 treatment and this became more benefit to hinder dislocations slipping.
Resumo:
The microstructures and mechanical properties of cast Mg-Zn-Al-RE alloys with 4 wt.% RE and variable Zn and At contents were investigated. The results show that the alloys mainly consist of alpha-Mg, Al2REZn2, Al4RE and tau-Mg-32(Al,Zn)(49) phases. and a little amount of the beta-Mg17Al12 phase will also be formed with certain Zn and At contents. When increasing the Zn or At content, the distribution of the Al2REZn2 and Al4RE phases will be changed from cluster to dispersed, and the content of tau-Mg-32(Al,Zn)(49) phase increased gradually. The distribution of the Al2REZn2 and Al4RE phases, and the content of beta- or tau-phase are critical to the mechanical properties of Mg-Zn-Al-RE alloys.
Resumo:
The electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd (x = 0, 1, 2 and 4 wt.%) alloys in 3.5% NaCl solution was investigated. The corrosion behavior of the alloys was assessed by open circuit potential measure, potentiodynamic polarization, and electrochemical impedance spectroscopy. The electrochemical results show the intermetallic precipitates with Nd behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. During corrosion, Al2O3 and Nd2O3, in proper ratio, is incorporated into the corrosion film, and enhances the corrosion resistance.
Resumo:
The discovery of the icosahedral phase (i-phase) in rapidly quenched Ti1.6V0.4Ni1-xCox (x=0.02-01) alloys is described herein. The i-phase occurs in a similar amount relative to the coexisting beta Ti phase. The electron diffraction patterns show the distinct spot anisotropy, indicating that the i-phase is metastable. The electrochemical hydrogen storage performance of these five alloy electrodes are also reported herein. The hydrogen desorption of nonelectrochemical recombination in the cyclic voltammetric (CV) response exhibits the demand for electrocatalytic activity improvement.
Resumo:
Mg-3Al-0.5Mn-0.5Zn-1MM alloy was prepared by metal mould casting method. The as-cast ingot was homogenized and then hot-rolled at 673 K with total thickness reduction of 65%. Microstructure and mechanical properties of the as-cast and hot-rolled samples were investigated. The results showed that the as-cast sample mainly consisted of alpha-Mg, beta-Mg17Al12, Al10Ce2Mn7, and Al11RE3 (RE = La and Ce) phases. The average grain size of the sample homogenized at 673 K was about 240 gm, and it was greatly refined to about 7 mu m by dynamic recrystallization for the hot-rolled sample.
Resumo:
The Mg-12Gd-4Y-2Nd-0.3Zn-0.6Zr (wt.%) alloy was prepared by casting technology, and the structure, age hardening behavior and mechanical properties of the alloy have been investigated. The results demonstrated that the alloy was composed of alpha-Mg matrix, a lot of dispersed Mg24RE5 (RE = Gd/Y/Nd) and Mg5RE precipitates in the as-cast and the T6 state alloys. The alloy exhibited remarkable age hardening response and excellent mechanical properties from room temperature (RT) to 300 degrees C by optimum solid solution and aging conditions. The ultimate tensile strength.
Resumo:
Ti40Cu40Ni10Zr10-xScx (x = 0.5 and 1, at%) alloys were prepared by copper mould casting method. Microstructures of the phi 3 mm rod alloys were investigated by XRD and SEM. The results showed that the phi 3 mm rods were glassy matrix with TiCu crystalline phase. Mechanical properties were studied by compressive test. Ti40Cu40Ni10Zr9Sc1 alloy exhibited good compressive strength over 2200 MPa and superior compressive deformation is about 7.9%.
Resumo:
The electrochemical deposition of magnesium was investigated in ethereal Grignard salt solution with tetraethylammonium bistrifluoro-methanesulfonimidate additive, using cyclic voltammetry, potentiostatic transients, and scanning electron microscope measurements. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of magnesium. From the analysis of the experimental current transients, it was shown that the magnesium deposition process was characterized as a three-dimensional nucleation. The deposited product obtained from potentiostatic reduction presented a generally uniform and dense film.
Resumo:
Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.
Resumo:
The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.
Resumo:
A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.
Resumo:
Mg-5Al-0.3Mn-xCe (x = 0-3, wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results revealed that the main phases of as-cast Mg-5Al-0.3Mn alloy consist of alpha-Mg matrix and beta-Mg17Al12 phase. With the addition of Ce element, Al11Ce3 precipitates were formed and mainly aggregated along the grain boundaries. The amount of the Al11Ce3 precipitates increased with increasing addition of Ce, but the amount of beta-Mg17Al12 phase decreased. The highest tensile strength was obtained in Mg-5Al-0.3Mn-1.5Ce alloy. The ultimate tensile strength (UTS), yield strength (YS) and elongation at room temperature are 203 MPa, 88 MPa and 20%, separately.
Resumo:
Mg-8Gd-1Dy-0.3Zn (wt.%) alloy was prepared by high-pressure die-casting technique. The thermal stability, mechanical properties at temperature range from room temperature to 573 K and strengthening mechanism was investigated. The results showed that the die-cast state alloy was mainly composed of fine cellular equiaxed grain. The fine porosity-free skin region was related to the aggregation of rare earth elements. The long lamellar-shaped stacking compound containing Zn and polygon-shaped precipitate were observed along the grain boundaries. The die-cast sample exhibited high mechanical properties and good thermal stability until 523 K.