279 resultados para Electroluminescent displays


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium acetylacetonate [Li(acac)] covered with aluminium was used as an efficient electron injection layer in organic light-emitting devices (OLEDs) consisting of NPB as the hole transport layer and Alq(3) as the electron transport and light emitting layer, resulting in lower turn- on voltage and increased current efficiency. The turn- on voltage (the voltage at a luminance of 1 cd m(-2)) was decreased from 5.5 V for the LiF/Al and 4.4 V for Ca/Al to 4.0 V for Li(acac)/Al, and the device current efficiency was enhanced from 4.71 and 5.2 to 7.0 cd A(-1). The performance tolerance to the layer thickness of Li(acac) is also better than that of the device with LiF. LiF can only be used when deposited as an ultra- thin layer because of its highly insulating nature, while the Li(acac) can be as thick as 5 nm without significantly affecting the EL performance. We suppose that the free lithium released from Li(acac) improves the electron injection when Li(acac) is covered with an Al cathode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed Bragg reflectors (DBR) with different reflection wavelengths were designed, and were used to fabricate microcavity organic light-emitting diodes (OLEDs) based on tris(8-hydroxyquinoline)-aluminum (Alq(3)) as the emitter and N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB) as the hole-transporting layer. The microcavity was composed of DBR dielectric mirror and metal electrode aluminum (Al) mirror. Some effects of vertical optical Fabry-Perot microcavity on spontaneous emission in OLEDs were investigated. Spectral narrowing, enhancement of emitting intensity and anglular dependence of emission were observed due to the microcavity effect. It was found experimentally that the utilization of DBR is a better method to adjust the emissive mode in the resonant cavity in OLEDs well. Thus the realization of different color light emission becomes possible by the combination of carefully designed microcavity and electroluminescent organic semiconductors in a single LED.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel blue-emitting phosphorescent iridium(III) complexes with fluorinated 1,3,4-oxadiazole derivatives as cyclometalated ligands and dithiolates as ancillary ligands have been synthesized and fully characterized; highly efficient OLEDs have been achieved using these complexes in the light-blue to blueemitting region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and characterization of two new polyphenylphenyl compounds is reported. One compound (CPP) acts as a blue light-emitting material, but contains strong electron-accepting groups that form exciplexes with electron-donating arylamines that are widely used as hole-transporting materials. Inserting a layer of the other compound into the organic light-emitting diodes (see figure) suppresses the formation of exciplexes, and gives high-efficiency blue-light emission from the CPP layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly efficient white electroluminescent polymer with simultaneous blue, green, and red emission is reported, developed using a dopant/host strategy by covalently attaching both a green- and a red-light-emitting dopant to the side chain of a blue-light-emitting polymer host (see figure). In a single-layer device a maximum luminance efficiency of 7.3 cd A(-1) with CIE coordinates of (0.31,0.32) is achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A white electroluminescent single polymer system with both high electroluminescence efficiency and excellent color rendering index (CRI) value is developed by covalently attaching blue, green, and red dopant units as individual light-emitting species to the side chain of polyfluorene as individual polymer host. A luminous efficiency of 8.6 cd A(-1), CIE coordinates of (0.33, 0.36) and CRI value of 88 was demonstrated with their single-layer devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of orange-red to red phosphorescent heteroleptic Cu-I complexes (the first ligand: 2,2 '-biquinoline (bq), 4,4 '-diphenyl2,2 '-biquinoline (dpbq) or 3,3 '-methylen-4,4 '-diphenyl-2,2 '-biquinoline (mdpbq); the second ligand: triphenylphosphine or bis[2-(diphenylphosphino)phenyl]ether (DPEphos)) have been synthesized and fully characterized. With highly rigid bulky biquinoline-type ligands, complexes [Cu(mdpbq)(PPh3)(2)](BF4) and [Cu(mdpbq)(DPEphos)](BF4) emit efficiently in 20 wt % PMMA films with photoluminescence quantum yield of 0.56 and 0.43 and emission maximum of 606 nm and 617 nm, respectively. By doping these complexes in poly(vinyl carbazole) (PVK) or N-(4-(carbazol-9-yl)phenyl)-3,6-bis(carbazol-9-yl) carbazole (TCCz), phosphorescent organic light-emitting diodes (OLEDs) were fabricated with various device structures. The complex [Cu(mdpbq)(DPEphos)](BF4) exhibits the best device performance. With the device structure of ITO/PEDOT/ TCCz:[Cu(mdpbq)(DPEphos)](BF4) (15 wt %)/TPBI/LiF/Al (III), a current efficiency up to 6.4 cd A(-1) with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.61, 0.39) has been realized. To our best knowledge, this is the first report of efficient mononuclear Cu complexes with red emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two orange phosphorescent iridium complex monomers, 9-hexyl-9-(iridium (III)bis(2-(4'-fluorophenyl)-4-phenylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-PIr) and 9-hexyl-9-(iridium(III)bis(2-(4'-fluorophenyl)-4-methylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-MIr), were successfully synthesized. The Suzuki polycondensation of 2,7-bis(trimethylene boronate)-9,9-dioctylfluorene with 2,7-dibromo-9,9-dioetylfluorene and Br-Plr or Br-MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5-3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue- and orange-emission peaks. A white-light-emitting diode with a configuration of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br-PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br-MIr) was employed as the white-emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isothermal and non-isothermal melt-crystallization kinetics of nylon 1212 were investigated by differential scanning calorimetry. Primary and secondary crystallization behaviors were analysed based on different approaches. The results obtained suggested that primary crystallization under isothermal conditions involves three-dimensional spherulite growth initiated by athermal nucleation, while under non-isothermal conditions, the mechanism of primary crystallization is more complex. Secondary crystallization displays a lower-dimensional crystal growth, both in the isothermal and non-isothermal processes. The crystallite morphology of nylon 1212, isothermally crystallized at various temperatures, was observed by polarized optical microscopy. The activation energies of crystallization under isothermal and non-isothermal conditions were also calculated based on different approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of optically active poly(ester imide)s (PEsI's) has been synthesized by the polycondensation reactions of new axially asymmetric dianhydrides, that is, (R)-2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride and (S)-2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride, and various diamines with aromatic, semiaromatic, and aliphatic structures. The polymers have inherent viscosities of 0.45-0.70 dL/g, very good solubility in common organic solvents, glass-transition temperatures of 124-290 degreesC, and good thermal stability. Wide-angle X-ray crystallography of these polymers shows no crystal diffraction. In comparison with model compounds, an enhanced optical rotatory power has been observed for the repeat unit of optically active PEsI's based on aromatic diamines, and it has been attributed to a collaborative asymmetric perturbation of chiral 1,1'-binaphthyls along the rigid backbones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By doping a fluorescent dye in the emissive layer, we realized high efficient red organic light-emitting diodes (OLEDs) based on a europium complex. The OLEDs realized by this method showed pure red emission at 612 nm with a full width at half maximum Of 3 nm. The Commission International de L'Eclairage Coordination keeps approximately the same as the emission of pure Eu3+. The maximum brightness and EL efficiency reached 2450 cd/m(2) at 20 V and 9.0 cd/A (6.0 lm/w) at a current density of 0.012 mA/cm(2), respectively. At the brightness of 100 cd/m(2), the current efficiency reached 4.4 cd/A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroluminescence (EL) devices with Eu(HTH)(3)phen [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione, phen: I 10-phenanthroline] as an emissive centre were fabricated using vacuum evaporation. In addition to the Eu3+ 5D0 --> F-7(J) (J = 0-4) lines that were visible in the photoluminescence signal, the device also showed strong emission from the D-5(1) --> F-7(J) (J = 0-4) transitions. The enhanced emission from the D-5(1) F-7(J) (J = 0-4) transitions was attributed to the increased excitation intensity in the EL device. The luminescence lifetimes of the 5 D, and 5 Do levels were measured to be 0.6 mus and 866 mus, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triphenyl pyrazoline derivatives (TPPs) bearing electron withdrawing and pushing substitutents were synthesized. Their photoluminescence (PL) properties in the solution and doped in poly(N-vinylcarbazole) (PVK) thin films were investigated. When TPPs were doped into PVK films the photoluminescence intensity was enhanced with increasing TPPs concentration. It indicated that the energy transfer from PVK to TPPs has happened. Double and three-layer electroluminescence (EL) devices based on PVK doped with TPPs as an active layer were fabricated and investigated and the electroluminescent mechanism was followed by energy transfer from PVK to TPPs. The pyrazoline derivative with both electron withdrawing and pushing substituents was the optimistic candidate for electroluminescent emitter due to higher transfer efficiency from electric energy to light energy as well as larger luminance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A conjugated poly(p-CN-phenylenevinylene) (PCNPV) containing both electron-donating triphenylamine units and electron-withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight-average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi-reversible oxidation with a relatively low potential because of the triphenylamine unit. A single-layer indium tin oxide/PCNPV/Mg-Ag device emitted a bright red light (633 nm).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel hole-transporting molecules containing 1,4-bis(carbazolyl)benzene as a central unit and different numbers of diphenylamine moieties as the peripheral groups have been synthesized and characterized. These compounds are thermally stable with high glass transition temperatures of 141-157 degreesC and exhibit chemically reversible redox processes. Their amorphous state stability and hole transport properties can be significantly improved by increasing the number of diphenylamine moieties in the outer part and by controlling the symmetry of the carbazole-based molecules. These compounds can be used as good hole-tran sporting materials for organic electroluminescent (EL) devices. The device performance based on tri- and tetra-substituted carbazole derivatives is comparable to that of a typical 4,4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (NPB)-based device.