284 resultados para Degradation kinetics
Resumo:
Isothermal crystallization kinetics in the melting of poly(ethylene oxide) (PEO) were investigated as a function of the shear rate and crystallization temperature by optical microscopy. The radial growth rates of the spherulites are described by a kinetics equation including shearing and relaxation combined effects and the free energy for the formation of a secondary crystal nucleus. The free-energy difference between the liquid and crystalline phases increased slightly with rising shearing rates. The experimental findings showed that the influence of the relaxation of PEO, which is related to the shear-induced orientation and stretch in a PEO melt, on the rate of crystallization predominated over the influence of the shearing. This indicated that the relaxation of PEO should be more important so that the growth rates increase with shearing, but it was nearly independent of the shear rate within the measured experimental range.
Resumo:
The extraction and stripping kinetics of yttrium(III) with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane as an acid extractant have been investigated by constant interfacial cell with laminar flow. The experimental hydrodynamic conditions have been chosen so that the contribution of diffusion to the measured rate of reaction is minimized. The plot of interfacial area on the rate has shown a linear relationship, which makes the interface the most probable local for the chemical reactions. At the same time, the extraction thermodynamic and kinetic methods are compared to determine the equilibrium extraction constant. A rate equation and the rate-determining step of the extraction and stripping of yttrium(III) have also been obtained, respectively.
Resumo:
The complex protein folding kinetics in wide temperature ranges is studied through diffusive dynamics on the underlying energy landscape. The well-known kinetic chevron rollover behavior is recovered from the mean first passage time, with the U-shape dependence on temperature. The fastest folding temperature T-0 is found to be smaller than the folding transition temperature T-f. We found that the fluctuations of the kinetics through the distribution of first passage time show rather universal behavior, from high-temperature exponential Poissonian kinetics to the relatively low-temperature highly nonexponential kinetics. The transition temperature is at T-k and T-0, T-k, T-f. In certain low-temperature regimes, a power law behavior at long time emerges. At very low temperatures ( lower than trapping transition temperature T< T-0/(4&SIM;6)), the kinetics is an exponential Poissonian process again.
Resumo:
We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments ( for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier.
Resumo:
Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer.
Resumo:
A new method for prolidase (PLD, EC 3.4.13.9) activity assay was developed based on the determination of proline produced from enzymatic reaction through capillary electrophoresis (CE) with tris(2,2'-bipyridyl)ruthenium(11) [Ru(bpy)(3)(2+)] electrochemiluminescence detection (ECL). A detection limit of 12.2 fmol (S/N = 3) for proline, corresponding to 1.22 x 10(-8) units of prolidase catalyzing for 1 min was achieved. PLD activity determined by CE-ECL method was in agreement with that obtained from the classical Chinard's one. CE-ECL showed its powerful resolving ability and selectivity as no sample pretreatmentwas needed and no interference existed. The clinical utility of this method was successfully demonstrated by its application to assay PLD activity in the serum of diabetic patients in order to evaluate collagen degradation in diabetes mellitus (DM). The results indicated that enhanced collagen degradation occurred in DM.
Resumo:
Atomic force microscope (AFM)-based scanned probe oxidation (SPO) nanolithography has been carried out on an octadecyl-terminated Si(111) surface to create dot-array patterns under ambient conditions in contact mode. The kinetics investigations indicate that this SPO process involves three stages. Within the steadily growing stage, the height of oxide dots increases logarithmically with pulse duration and linearly with pulse voltage. The lateral size of oxide dots tends to vary in a similar way. Our experiments show that a direct-log kinetic model is more applicable than a power-of-time law model for the SPO process on an alkylated silicon in demonstrating the dependence of oxide thickness on voltage exposure time within a relatively wide range. In contrast with the SPO on the octodecysilated SiO2/silicon surface, this process can be realized by a lower voltage with a shorter exposure time, which will be of great benefit to the fabrication of integrated nanometer-sized electronic devices on silicon-based substrates. This study demonstrates that the alkylated silicon is a new promising substrate material for silicon-based nanolithography.
Resumo:
TiO2 nanocrystallites were prepared front precursors tetra-n-butyl titanate (Ti(OC4H9)(4)) and titanium tetrachloride (TiCl4). The precursors were hydrolyzed by gaseous water in autoclave, and then calcined at predetermined testing temperatures. The samples were characterized by X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectra (FT-IR), and UV-vis diffuse reflectance spectra (DRS). The photocatalytic activities of the samples were evaluated by the photobleaching of methylene blue (MB) in aqueous solution and the photocatalytic oxidation of propylene in gas phase at ambient temperature. The results showed that the anatase phase nanocrystalline TiO2 could be obtained at relatively low temperatures (for precursor Ti(OC4H9)4 at I I VC and for TiCl4 at 140 degrees C, respectively), and that the as prepared samples exhibited high photocatalytic activities to photobleach MB in aqueous solution. As the calcination temperatures increasing. the decolor ratio of MB increased and reached the maximum value of nearly 100% at 600 degrees C, and then decreased. The photobleaching of MB by all samples followed the pseudo-first-order kinetics with respect to MB concentration.
Resumo:
The effects of diluents, temperature, acidity, and ionic strength of the aqueous phase on the interfacial properties of DEHEHP have been extensively investigated using the Du Nouy ring method. In addition, the effect of cerium(IV) concentration loaded in the organic phase on the interfacial tension has also been studied. With the increase of DEHEHP concentration, the value of interfacial tension (gamma) decreases in the studied system, which shows that DEHEHP has interfacial activity as a kind of surfactant. The surface excess at the saturated interface (Gamma(max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C-min) under the different conditions are calculated according to two adsorption equations such as the Gibbs and Szyszkowski functions to be presented in comprehensive tables and figures. The relationship between the interfacial activity of DEHEHP and cerium(IV) extraction kinetics by DEHEHP has been discussed by considering different factors such as the effects of diluents and temperature. However, the interfacial activity parameter of extractant only is a qualitative parameter, but cannot provide strong enough evidence to quantitatively explain the relationship between extraction kinetics and interfacial properties of an extractant.
Resumo:
Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetics studies on reactive extrusion were carried out for the difficulties as expected. In this work, the macromolecular peroxide-induced grafting of acrylic acid and methyl methacrylate onto linear low density polyethylene by reactive extrusion was chosen as the model system for the kinetics study; the samples were taken out from the barrel at five ports along screw axis and analyzed by FTIR, H-1 NMR, and ESR. For the first time, the time-evolution of reaction rate, the reaction order, and the activation energy of graft copolymerization and homopolymerization in the twin screw extruder were directly obtained. On the basis of these results, the general reaction mechanism was tentatively proposed. It was demonstrated that an amount of chain propagation free radicals could keep alive for several minutes even the peroxides completely decomposed and the addition of monomer to polymeric radicals was the rate-controlled step for the graft copolymerization.
Resumo:
Studies have been made on the kinetics of ytterbium(III) with bis-(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, HA) in n-heptane using a constant interfacial cell with laminar flow. The stiochiometry and the equilibrium constant of the extracted complex formation reaction between Yb3+ and Cyanex 272 are determined. The extraction rate is dependent of the stirring rate. This fact together with the Ea value suggests that the mass transfer process is a mixed chemical reaction-diffusion controlled at lower temperature, whereas it is entirely diffusion controlled at higher temperature. The rate equations for the ytterbium extraction with Cyanex 272 have been obtained. The rate-determining step is also made by predictions derived from interfacial reaction models, and through the approximate solutions of the flux equation, diffusion parameters and thickness of the diffusion film have been calculated.
Resumo:
The yttrium(III) extraction kinetics and mechanism with bis-(2,4,4-trimethyl-pentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane have been investigated by constant interfacial cell with laminar flow. The data has been analyzed in terms of pseudo-first order constants. Studies on the effects of stirring rate, temperature, acidity in aqueous phase, and extractant concentration on the extraction rate show that the extraction regime is dependent on the extraction conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of Cyanex 272 at heptane-water interfaces has made the interface the most probable location for the chemical reactions. The forward, reverse rate equations and extraction rate constant for the yttrium extraction with Cyanex 272 have been obtained under the experimental conditions. The rate-determining step has been also predicted from interfacial reaction models. The predictions have been found to be in good agreement with the rate equations obtained from experimental data, confirming the basic assumption that the chemical reaction is located at the liquid-liquid interface.
Resumo:
The interfacial tension is measured for Cyanex 302 in heptane and adsorption parameters are calculated according to Gibbs equation and Szyskowski isotherm. The results indicate that Cyanex 302 has a high interfacial activity, allowing easy extraction reaction to take place at the liquid-liquid interface. The extraction kinetics of yttrium(III) with Cyanex 302 in heptane are investigated by a constant interfacial cell with laminar flow. The effects of stirring rate, temperature and specific interfacial area on the extraction rate are discussed. The results suggest that the extraction kinetics is a mixed regime with film diffusion and an aqueous one-step chemical reaction proposed to be the rate-controlling step. Assuming the mass transfer process can be formally treated as a pseudo-first-order reversible reaction with respect to the metal cation, the rate equation for the extraction reaction of yttrium(III) with Cyanex 302 at pH <5 is obtained as follows:R-f = 10(-7.85)[Y(OH)(2)(+)]((a))[H(2)A(2)]((o))(1.00)[H+]((a))(-1.00)Diffusion parameters and rate constants are calculated through approximate solutions of the flux equation.
Resumo:
The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.
Resumo:
Kinetics and mechanism of stripping of yttrium(III) previously extracted by mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272, HA), and 2-ethylhexyl phosphonic acid mono-2-ethylhexl ester (P507, HB) dissolved in heptane have been investigated by constant interfacial-area cell by laminar flow. The corresponding equilibrium stripping equation and equilibrium constant were obtained. The studies of effects of the stirring rate and temperature on the stripping rate show that the stripping regime is dependent on the stripping conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of mixtures of Cyanex 272 and P507 at heptane-water interfaces makes the interface the most probable locale for the chemical reactions. The stripping rate constant is obtained, and the value is compared with that of the system with Cyanex 272 and P507 alone. It is concluded that the stripping ability with the mixtures is easier than that of P507 due to lower the activation energy of the mixtures. The stripping rate equation has also been obtained, and the rate-determining steps are the two-step interfacial chemical reactions as predicted from interfacial reaction models.