188 resultados para Cold-formed members
Resumo:
As far as the architecture of the south Dabie metamorphic terrain is concerned, there have been lots of different opinions for a long time. Wang et al. (1990, 1992) thought of it was a continuous terrain. Okay (1993) held that it consistes of two different tectonic terrains: the 'hot' and 'cold' eclogite belt. Liu and Wang (1998) held that it is composed of different metamorphic blocks through 'melange' in depth. For this reason, we have choiced Hualiangting reservoir of Taihu county as the study area treat eclogite as the investigated objection in this thesis, and employ the detailed 1 :10000 geological mapping, methods of Petrography and electonic probe anaylsis to probe into the architecture of the south Dabie metamorphic terrains. In the light of the eclogite occurrenc in the field, the analysis of Petrography, the research on metamoiphic P-T path and condition of the peak metamorphic P-T condition, the eclogite in the Taihu area of Dabieshan have been classified into three types eclogite from the south to the north: The zhujiachong type eclogite; The Daba type eclogite; (3) The Jinheqiao type eclogite, their mineral composition, structure, and mineral component vary continuously. These eclogites have the same rnetamoiphic stages, P-T evolution pattern, and their peak P-T condition varies continuously. The zhujiachong type eclogite is formed in the high pressure metamoiphic environment. The Jinheqiao type eclogite is formed in the typical ultra-high pressure environment. The Daba type eclogite is formed in the transformed metamorphic environment between high pressure and ultra-high pressure metamorphism. All these evidences show that the south Dabie metamorphic terrain is a continuous metamorphic block and no large fault ever existed.
Resumo:
Gaochentou region is located in the southwest direction of Gaochentou village in Huanghua city of Hebei province. In regionally structural position, It lies in Qikou sag In the middle part of Huanghua depression, which belongs to the east part of the south Dagang structure zone in the middle part of Huanghua depression. Its' very beneficial at regional structure in Gaochentou , and It becomes the advantage area for oil and gas gathered and preserved, Sandstone reservoir of Dongying Formation is main bearing bed .Dongying Formation in Gaochentou region of Huanghua depression is consisted of set of mudstone and sandstone interbeds by deposited delta fades . Dongying Formation can be divided into 3 members from above to below: the first member of Dongying Formation (FMDF), the second member of Dongying Formation (SMDF), and third member of Dongying Formation (TMDF). The lithology of the upper part of FMDF was consisted of mostly middle-grained and fine-grained sandstone, and it is small for the oil-bearing area of the sand bodies .The lithology of the lower part is coarse-grained sandstone bodies which are well connected between sandstone bodies of wells, and the lower part was main bed of oil production in Dongying Formation; SMDF and TMDF are consisted of larger scale set of mudstone, in which the sandbodies are lenticular and pinch out quickly, and the lithology was mostly fine sandstone and silt stone, in which there are little oil and gas .Because the reservoirs in this area are largely influenced by the factors such as lithology, fault and others, and the reservoirs have the strong,heterogeneity , there exists the problem of oil-down and water-up for vertical distribution of oil and gas bearing. It is not very clearly for the three dimension distribution of sandstone , and the geology researchs is not enough. So, it can't satisfy the need of further development and production for Gaochentou oilfield.Having the key problem of oil-down and water-up and the mechanism of the reservoir for Gaochentou area, There are as follow study works, the first, is study of the high-resolution correlation of sequence stratigraphy and sedimentary microfacies. Dongying Formation was divided into three parasequence sets and each parasequence set was divided into different amount of parasequences. FMDF, as the main oil and gas producing bed, can be divided into seven parasequences. Oil and gas are discovered in six parasequences except the seventh. On the basis of study of sedimentary microfacies, the sediments of Dongying Formation are considered deposited mainly in delta front subfacies. The microfacies types of Dongying Formation are sub-water distirbutary channel, sub-water natural bank, inter distributary channel bay, distributary channel mouth dam, and delta front mat sand.Seismic facies analysis and logging-constrained inversion technique were applied by Author for transverse prediction of sandstone reservoir. Having 4 modes of interwell single sandbodies correlation technique, Author have described distribution characteristics of sandbodies, and established geological reservoir model of Gaochentou reservoir.Author presented that the reservoirs characteristic have very strong heterogeneity ,and In the section of sandstone interlayed with mudstone,the folium sandstone interlayed with each other, and the wedge shaped sandbodies pinched out in the mudstone. So the pinch-out up sandstone trap and lenticular sandstone trap are easily formed. They are most small scale overlying pinches out in the place of slope. This article applies the concept of deep basin oil to resolve reasonably the problem of which the oil is below the water in Gaochentou area. Combined with the study of sedimentary facies, reservoir and other aspects, the mechanism and patterns of deep basin oil are studied on the basis of characteristics in Gaochentou area.On the basis of the above study, the mechanism of the oil and gas' migration and accumulation in isotropic sandstone and heterogeneous sandstone are thoroughly analyzed through experiments on physical modeling. Experiments on physical modeling show that the discrepancy between sand layers with different permeability and thickness has important influence on the direction, path, and injection layer of oil's migration. At the beginning of the injection of oil and gas in high permeability sand layer, the pressure is low, the migration resistance is small, and the oil and gas are more easily displacing the water in sand. So it can act as good transformation layer or reservoir. But at the beginning of the injection of oil and gas in sand layer with low permeability, the pressure is high, the migration resistance is big, and the oil and gas are more difficultly displacing the water in sand. So it can only act as bad or worse transformation layer or reservoir. Even if it cannot act as transformation layer or reservoir, it can act as water layer or dry layer. The discrepancy between sand layers on permeability and thickness can make discrepancy in injection of oil and gas between different layers. Consequently it leads to small amount of oil and gas injection in sand layers with low permeability. Ultimately it affects the oil's accumulation and distribution in different sand layers.At Last, combining analysis of the structure and pool forming condition, The thesis has established models of reservoir formation to predict the advantage distribution of oil and gas bearing , and put forward the prospective target It is not only of theoretical signification for explosion and importance, but also has realistic value in guiding the progressive petroleum exploration and exploitation.
Resumo:
Three soil spots were found in Grove Mountains, east Antarctica during 1999-2000, when the Chinare 16th Antarctic expedition teams entered the inland Antarctica. The characteristics of soils in Grove Mountains are desert pavement coating the surface, abundant water soluble salt, negligible organ matter, and severe rubification and salinization, scarces of liquid water, partly with dry permafrost, corresponding with the soils of McMurdo, Transantarctic. The soils age of Grove Mountains is 0.5-3.5Ma. Podzolization and redoximorphism are the main features in coastal Wilks region, in addition, there is strong enrichment of organic matter in many soils of this region. The main soil processes of Fildes Peninsula of King George Island include the intense physical weathering, decalcification and weakly biochemical processes. Peat accumulation is the main processes in Arctic because of humid and cold environment.Based on synthesis of heavy minerals, particle size, quartz grain surface textures, as well as pollen in soils, the soils parent materials of Grove Mountains derived from alluvial sediment of the weathering bedrocks around soils, and formed during the warm period of Pliocene. The detailed information is followed .l)The results of heavy minerals particle size showed the parent minerals derived form the weathering bedrocks around soils. 2)The quartz sand surface textures include glacial crushing and abrasion such as abrasive conchoidal fractures and grain edges, abrasive subparallel linear fractures and angularity, subaqueous environments produce V-shaped and irregular impact pits, polished surface, and chemical textures, such as beehive solution pits, which showed the water is the main force during the sediment of the soil parent minerals. 3)The pollen consist of 40 plant species, of which at least 5 species including Ranunculaceae, Chenopodiaceae, Artemisia, Gramineae, Podocarpus belong to the Neogene vegetation except the species from the old continent. Compared with Neogene vegetation of Transantarctic Mountains, Antarctic, we concluded that they grow in warm Pliocene.
Resumo:
The sedimentary-volcanic tuff (locally called "green-bean rock") formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time and predominantly green in color. The green-bean rock is a perfect indicator for stratigraphic division. Its petrographic and geochemical features are unique, and it is composed mainly of glassy fragments and subordinately of crystal fragments and volcanic ash balls. Analysis of the major and trace elements and rare-earth elements ( REE), as well as the related diagrams, permits us to believe that the green-bean rock is acidic volcanic material of the calc-alkaline series formed in the Indosinian orogenic belt on the Sino-Vietnam border, which was atmospherically transported to the tectonically stable areas and then deposited as sedimentary-volcanic rocks there. According to the age of green-bean rock, it is deduced that the boundary age of the Middle-Lower Triassic overlain by the sedimentary-volcanic tuff is about 247 Ma.
Resumo:
Carbonaceous deposits formed during the temperature-programmed surface reaction (TPSR) of methane dehydro-aromatization (MDA) over Mo/HZSM-5 catalysts have been investigated by TPH, TPCO2 and TPO, in combination with thermal gravimetric analysis (TG). The TPO profiles of the coked catalyst after TPSR of MDA show two temperature peaks: one is at about 776 K and the other at about 865 K. The succeeding TPH experiments only resulted in the diminishing of the area of the high-temperature peak, and had no effect on the area of the low-temperature peak. On the other hand, the TPO profiles of the coked catalyst after succeeding TPCO2 experiments exhibited obvious reduction in the areas of both the high-and low-temperature peaks, particularly in the area of the low-temperature peak. On the basis of TPSR, TPR and TPCO2 experiments and the corresponding TG analysis, quantitative analysis of the coke and the kinetics of its burning-off process have been studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The catalytic performances of methane dehydroaromatization (MDA) under non-oxidative conditions over 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time at 773 K have been investigated in combination with ex situ H-1 MAS NMR characterization. Prolongation of the calcination time at 773 K is in favor of the diffusion of the Mo species on the external surface and the migration of Mo species into the channels, resulting in a further decrease in the number of Bronsted acid sites, while causing only a slight change in the Mo contents of the bulk and in the framework structure of the HZSM-5 zeolite. The MoQ(x) species associated and non-associated with the Bronsted acid sites can be estimated quantitatively based on the 1H MAS NMR measurements as well as on the assumption of a stoichiometry ratio of 1: 1 between the Mo species and the Bronsted acid sites. Calcining the 6 wt.% Mo/HZSM-5 catalyst at 773 K for 18 h can cause the MoOx species to associate with the Bronsted acid sites, while a 6 Wt-% MO/SiO2 sample can be taken as a catalyst in which all MoOx species are non-associated with the Bronsted acid sites. The TOF data at different times on stream on the 6 wt.% Mo/HZSM-5 catalyst calcined at 773 K for 18 h and on the 6 Wt-% MO/SiO2 catalyst reveal that the MoCx species formed from MoOx associated with the Bronsted acid sites are more active and stable than those formed from MoOx non-associated with the Bronsted acid sites. An analysis of the TPO profiles recorded on the used 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time combined with the TGA measurements also reveals that the more of the MoCx species formed from MoOx species associated with the Br6nsted acid sites, the lower the amount of coke that will be deposited on it. The decrease of the coke amount is mainly due to a decrease in the coke burnt-off at high temperature. (c) 2005 Elsevier B.V. All rights reserved.