430 resultados para Chang
Resumo:
Rashba spin splitting (RSS) in biased semiconductor quantum wells is investigated theoretically based on eight-band k center dot p theory. We find that at large wave vectors, RSS is both nonmonotonic and anisotropic as a function of in-plane wave vector, in contrast to the widely used isotropic linear model. We derive an analytical expression for RSS, which can qualitatively reproduce such nonmonotonic behavior at large wave vectors. We also investigate numerically the dependence of RSS on the various band parameters and find that RSS increases with decreasing band gap and subband index, increasing valence band offset, external electric field, and well width. All these dependences can be qualitatively described by our analytical model.
Resumo:
We investigate theoretically spin-polarized transport in a one-dimensional waveguide structure under spatially periodic electric fields. Strong spin-polarized current can be obtained by tuning the external electric fields. It is interesting to find that the spin-dependent transmissions exhibit gaps at various electron momenta and/or gate lengths, and the gap width increases with increasing the strength of the Rashba effect. The strong spin-polarized current arises from the different transmission gaps of the spin-up and spin-down electrons. (c) 2006 American Institute of Physics.
Resumo:
The transport property of a lateral two-dimensional paramagnetic diluted magnetic semiconductor electron gas under a spatially periodic magnetic field is investigated theoretically. We find that the electron Fermi velocity along the modulation direction is highly spin dependent even if the spin polarization of the carrier population is negligibly small. It turns out that this spin-polarized Fermi velocity alone can lead to a strong spin polarization of the current, which is still robust against the energy broadening effect induced by the impurity scattering. (c) 2006 American Institute of Physics.
Resumo:
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We investigate theoretically the interplay between Zeeman splitting, Rashba spin-orbit interaction (RSOI), and Dresselhaus spin-orbit interaction (DSOI) and its influence on the magnetotransport property of two-dimensional electron gas (2DEG) at low temperature. Our theoretical results show that the nodes of the beating patterns of the magnetoresistivity rho(xx) for 2DEG with RSOI or DSOI alone depend sensitively on the total spin splitting induced by these three spin splitting mechanisms. It is interesting to find that the eigenstates in the presence of RSOI alone are connected with those in the presence of DSOI alone but with opposite Zeeman splitting by a time-reversal transformation. Consequently, the magnetoresistivities exhibit exactly the same oscillation patterns for these two cases. For strong RSOI or DSOI alone, the magneto-oscillation of rho(xx) shows two distinct periods. For 2DEG with both RSOI and DSOI, the beating patterns vanish for equal RSOI and DSOI strengths and vanishing Zeeman splitting. They will appear again, however, when Zeeman splitting or the difference between RSOI and DSOI strengths increases.
Resumo:
The origin of spurious solutions in the eight-band envelope function model is examined and it is shown that spurious solutions arise from the additional spurious degeneracies caused by the unphysical bowing of the conduction bands calculated within the eight-band k center dot p model. We propose two approaches to eliminate these spurious solutions. Using the first approach, the wave vector cutoff method, we demonstrate the origin and elimination of spurious solutions in a transparent way without modifying the original Hamiltonian. Through the second approach, we introduce some freedom in modifying the Hamiltonian. The comparison between the results from the various modified Hamiltonians suggests that the wave vector cutoff method can give accurate enough description to the final results.
Resumo:
A quantum waveguide theory is proposed for hole transport in the mesoscopic structures, including the band mixing effect. We found that due to the interference between the 'light' hole and 'heavy' wave, the transmission and reflection coefficients oscillate more irregularly as a function of incident wave vector geometry parameters. Furthermore conversion between the heavy hole and light hole states occurs at the intersection. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Using the multiband quantum transmitting boundary method (MQTBM), hole resonant tunneling through AlGaAs/GaMnAs junctions is investigated theoretically. Because of band-edge splitting in the DMS layer, the current for holes with different spins are tuned in resonance at different biases. The bound levels of the "light" hole in the quantum well region turned out to be dominant in the tunneling channel for both "heavy" and "light" holes. The resonant tunneling structure can be used as a spin filter for holes for adjusting the Fermi energy and the thickness of the junctions.
Resumo:
The spin interaction and the effective g factor of a magnetic exciton (ME) are investigated theoretically in a diluted magnetic semiconductor (DMS) quantum dot (QD), including the Coulomb interaction and the sp-d exchange interaction. At low magnetic field, the ME energy decreases rapidly with increasing magnetic field and saturates at high magnetic field for high Mn concentration. The ground state of the ME exhibits an interesting crossing behavior between sigma(+)-ME and sigma(-)-ME for low Mn concentration. The g(ex) factor of the ME in a DMS QD displays a monotonic decrease with increasing magnetic field and can be tuned to zero by an external magnetic field. (C) 2003 American Institute of Physics.
Resumo:
Photoluminescence (PL) properties of GaInNAs/GaAs quantum wells (QWs) with strain-compensated GaNAs layers grown by molecular beam epitaxy are investigated. The temperature-dependent PL spectra of GaInNAs/GaAs QW with and without GaNAs layers are compared and carefully studied. It is shown that the introduction of GaNAs layers between well and barrier can effectively extend the emission wavelength, mainly due to the reduction of the barrier potential. The PL peak position up to 1.41 mum is observed at the room temperature. After adding the GaNAs layers into QW structures, there is no essential deterioration of luminescence efficiency. N-induced localization states are also not remarkably influenced. It implies that with optimized growth condition, high-quality GaInNAs/GaAs QWs with strain-compensated GaNAs layers can be achieved. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The magnetoexciton polaron (MP) is investigated theoretically in a diluted magnetic semiconductor quantum dot (QD), with the Coulomb interaction and the sp-d exchange interaction included. The MP energy decreases rapidly with increasing magnetic field at low magnetic field and saturates at high magnetic field for small QDs, and the dependences of the MP energy on magnetic field are quite different for different QD radii due to the different carrier-induced magnetic fields B-MP. The competition between the sp-d exchange interaction and the band gap shrinkage results in there being a maximum exhibited by the MP energy With increasing temperature. Our numerical results are in good agreement with experiment (Maksimov A A, Bacher G, MacDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G and Molenkamp L W 2000 Phys. Rev. B 62 R7767).
Electronic structure of diluted magnetic semiconductor superlattices: In-plane magnetic field effect
Resumo:
The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.
Resumo:
Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic-field region the giant Zeeman splitting plays a dominant role that leads to a large negative magnetoconductivity. In the strong magnetic-field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s-d exchange interaction between the electron in the conduction band and the magnetic ions. The spin polarization increases rapidly with increasing magnetic field and the longitudinal current becomes spin polarized in strong magnetic field. The effect of spin-disorder scattering on MC is estimated numerically for low magnetic fields and found to be neglectible for our system.
Resumo:
Ballistic spin polarized transport through diluted magnetic semiconductor single and double barrier structures is investigated theoretically using a two-component model. The tunneling magnetoresistance (TMR) of the system exhibits oscillating behavior when the magnetic field is varied. An interesting beat pattern in the TMR and spin polarization is found for different nonmagnetic semiconductor/diluted magnetic semiconductor double barrier structures which arises from an interplay between the spin-up and spin-down electron channels which are split by the s-d exchange interaction.
Resumo:
The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.