552 resultados para COORDINATION CATALYST
Resumo:
In the study, a novel microemulsion system, consisting of water, iso-propanol and n-butanol, was developed to synthesize the nanostructured La0.95Ba0.05MnAl11O19 catalyst with high surface area and catalytic activity for methane combustion.
The role of coke in the deactivation of Mo/MCM-22 catalyst for methane dehydroaromatization with CO2
Resumo:
The effect of space velocity on reaction performance and coke deposition over 6Mo/MCM-22 catalyst in methane dehydro-aromatization (MDA) with CO2 were studied. The characterization of catalysts reacted at different space velocity after the same amount of methane feed by TG, TPO and Benzene/NH3-TPD techniques suggested that the inert coke maybe responsible for the deactivation of catalyst because of its blockage effect for pore system.
Resumo:
Colloidal alumina was used to improve the activity of an In/HZSM-5 catalyst for the selective reduction of NO with CH4 in the excess of oxygen. Compared with In/HZSM-5, the In/HZSM-5/Al2O3 catalyst showed higher activity in a wide range of reaction temperatures. It is visualized that a synergetic effect between In/HZSM-5 and Al2O3 enhances the conversion of NOx. The addition of Al2O3 improved the conversion of NO to NO2 and facilitated the activation of methane. An In/HZSM-5/Al2O3 pre-treated with steam for 15 h at 700 degreesC still showed a high activity for the removal of NOx with methane, while an In/HZSM-5 similarly pre-treated with steam showed a lower activity than the fresh sample. The activity of the In/HZSM-5/Al2O3 catalyst could be restored completely after water vapor was removed from the feed gas. Furthermore, it was found that the In/HZSM-5/Al2O3 remained fairly active under high GHSV and O-2 concentration conditions. It was also interesting to find that an increase in NO content could enhance the conversion of methane, and this illustrates that the existence of NO is beneficial for the activation of methane. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The reduction of NO with CO in the presence of excess oxygen was investigated over different noble metal catalysts for probing the relationship between catalytic properties and adsorption behaviors. Among the four precious metal catalysts investigated, Ir/ZSM-5 was found to be the only active one for NO reduction with CO under lean conditions. With the decreasing of the Ir content, higher NO conversion and CO selectivity was obtained. Temperature-programmed reaction (TPR) studies of NO/H-2/O-2 and NO/CO/O-2 showed that the Pt/ZSM-5 was active when H-2 was used as the reductant, whereas, the Ir/ZSM-5 was active when CO was the reducing agent. This difference is due to the different mechanisms of the two reactions. Temperature-programmed desorption (TPD) of NO, CO and O-2 showed that NO could dissociate more easily over the Ir/ZSM-5 than on the Pt/ZSM-5, while the oxidation of CO by O-2 proceeded more rapidly on the Pt/ZSM-5 than on the Ir/ZSM-5. The presence of excess O-2 inhibited drastically the dissociation of NO, which is considered as the key step for the NO-CO reaction. The high dissociation rate of NO over the Ir/ZSM-5 is visualized as the key factor for its superior high activity in NO reduction with CO under lean conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A series of heteropolyphosphatotungstate catalysts with different W/P ratio were prepared by different means. P-31 MAS NMR spectra show every heteropolyphosphatotungstate contains several species with different W/P ratio. Combined with propylene epoxidation results, it is shown that the band at chemical shift ca. delta = 5 ppm maybe corresponds to a catalyst precursor which can be the most efficiently converted to the structure {PO4 [WO(O-2)(2)](4)}(3-). Characterization results of ICP show, the catalysts with low W/P ratio show a good reactivity for propylene epoxidation. (C) 2004 Elsevier B.V. All rights reserved.