331 resultados para CHEMICALLY MODIFIED ELECTRODE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

随着我国工业的快速发展,环境污染日益严重,其中重金属已经成为最主要的污染物 之一。重金属具有分布广泛、半衰期长等特点,因而对人们的生产生活危害巨大。镉作为 一种常见的重金属污染物,它能够引发废用性萎缩、肾功能衰竭和感染等疾病,因此对环 境中存在的痕量镉的进行检测显得极为重要。传统的痕量分析方法包括光谱分析法和色谱 分析法,但这两方法所使用的仪器比较笨重,操作过程复杂,因而不适于在线分析。电化 学分析方法因其快速、便携、价格低廉、灵敏度高等特点而受到了人们的广泛关注,其中 较为常用的阳极溶出伏安法已经在镉离子等重金属离子的现场快速高灵敏检测中发挥了 重要作用。然而传统阳极溶出法中使用的汞电极因具有毒性而被许多国家禁止使用,所以 寻找汞电极的替代电极成为近年来的阳极溶出技术的研究热点。铋膜电极因具有类似汞电 极的分析性能且环境友好而受到了广泛重视,特别是各种化学修饰方法使得铋膜电极的性 能得到了显著提高。但是目前铋膜电极仍存在稳定性低、抗干扰能力差等问题,这些不足 严重制约了该类电极在重金属的阳极溶出分析中的应用。本文旨在通过新的化学修饰方法 解决铋膜电极应用中的瓶颈问题,发展具有优异分析性能的化学修饰铋膜电极应用于镉离 子等重金属离子的阳极溶出分析。本文的主要研究内容包括: l)以阳极溶出法测定镉离子为例,研究了化学修饰铋膜电极的响应特性,考察了富 集时间、富集电位、铋离子浓度、离子载体浓度和Nafion 浓度等实验条件对检测灵敏度的 影响。 2)将离子载体引入铋膜电极与Nafion 结合使用,研究了镉离子在该电极上的阳极溶 出响应,并探讨了铜、铅、铟三种金属离子对镉离子检测选择性的影响。将这种改良后的 化学修饰铋膜电极用于实际海水样品的检测,所得结果与ICP-MS 的测量结果基本一致。 3)将四氟硼酸钠引入铋膜电极与离子载体、碳纳米管结合使用,研究了镉离子在该 电极上的阳极溶出响应,考察了铜、铅、铟离子对镉离子测定的影响。 4)考察了电解富集和开路电位富集两种富集方式对电极灵敏度和选择性的影响。 实验表明:通过预富集,在未除氧的溶液中即可得到显著的镉离子溶出电流峰,且背 景噪音低;加入离子载体后,电极对目标金属有良好的选择性,可以在复杂基体条件下测 定重金属离子镉;电解富集条件下电极的的灵敏度较高,而开路电位富集条件下电极的选 择性较好。这种环保的无汞化学修饰电极为海水中重金属污染物的检测提供了新的手段。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

随着工农业生产的迅速发展,重金属污染问题越来越严重。由于重金属能 够在土壤、水体等环境中不断积累,并且通过食物链而进入人体内蓄积,因此对 人类健康构成潜在的危害。当人体内重金属含量过量时,会导致各种疾病的发生。 所以对痕量重金属污染物进行监测和分析,在食品安全、临床诊断和环境监测等 方面具有重要的现实意义。因此,研究快速、准确、灵敏、方便的检测重金属的 新方法十分必要。 近年来,化学修饰电极由于能够赋予电极新的、特定的功能,在提高电化 学选择性和灵敏度方面有着独特的优越性,因而成为电分析化学领域研究的热 点,并且被广泛应用于重金属元素的测定。但是,由于电极材料的限制,灵敏度 虽然有所改进,却始终很难达到一个新的高度。要提高化学修饰电极对重金属检 测的灵敏度,必须加入一些辅助的方法。 最近,纳米材料在很多分析方法中得到广泛应用,这些材料表现出很多它 们在常规尺度时所没有的独特的性质,如量子尺寸效应、表面效应、小尺寸效应、 量子隧道效应以及介电限域效应等。因此,作为一种新型的电极材料在电化学检 测和分析方面受到人们的日益关注。由于纳米材料本身具有大的比表面积和高的 表面自由能,这种纳米材料修饰电极的灵敏度得到大幅度提高。 离子载体是一类具有一个特定空腔的大环分子,能够从溶液中实现对某一 特定离子的萃取使之进入到有机相中。离子载体是电位型传感器敏感膜中的核心 成分,尽管它具有很高的选择性,但是除了电位分析外,在其它方面的用途却很 少被关注,可能是由于其本身的非导电性能所致。本论文采用纳米材料所特有的 对重金属离子强大的吸附性能和离子载体优良的选择性,制备了纳米材料及离子 载体修饰玻碳电极并用来对实际水样中痕量的重金属进行检测。主要内容包括以 下几个方面: 1.制备新型碳纳米管/铋膜复合修饰电极,研究了重金属钴在电极上的电化 学性能。结果表明,这种新型复合修饰电极的灵敏度得到显著提高,能实现最低 检测限为8´10-11 M的钴的吸附富集溶出。 2.利用羟基磷灰石的强吸附能力和碳纳米管的优异电化学性能,制备了新型 新型纳米材料及离子载体化学修饰电极的制备及其在痕量重金属污染物检测中的应用 II 的碳纳米管-纳米羟基磷灰石的双纳米复合材料,并将其用于金属镉的富集溶出。 结果表明,双纳米复合材料具有比单一材料更优异的性能,更有助于金属镉的富 集溶出。采用碳纳米管-纳米羟基磷灰石的双纳米复合材料修饰电极,能实现最 低检测限为4´10-9 M的镉的富集溶出,灵敏度得到明显提高。 3. 将导电性好、抗氧干扰能力强的铋膜与对重金属具有良好选择性的离子 载体相结合,制备了基于铋膜/离子载体的新型修饰电极,研究了金属铅在其表 面的富集溶出。结果表明,这种新型修饰电极的灵敏度和选择性都大为提高,具 有更高的溶出峰电流和更好的抗干扰能力,可以实现最低检测限为4.4´10-11 M 的铅的富集溶出。 4. 利用羟基磷灰石的强吸附能力和其三维多孔结构、离子载体对重金属离 子优异的选择性以及Nafion 膜良好的离子交换作用和化学稳定性,制备了基于 纳米材料和离子载体的新型化学修饰电极。这种方法不仅有助于提高对金属铅的 选择性和灵敏度,而且大大提高了富集效率。采用该新型化学修饰电极,能够实 现最低检测限为1´10-9 M的铅的富集溶出。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a facile strategy to tether lanthanide complexes to organic-inorganic hybrid titania materials via sol-gel processing by employing chemically modified titanium alkoxide as the precursor where the organic ligand sensitizing the luminescence of lanthanide ions is bonded to titanium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We produced silver tubes with an outer diameter of 1 mu m, wall thickness of 200 nm, and length of hundreds of micrometers by hydrothermal treatment of aqueous solutions of AgNO3 and hyperbranched polyglycidol (HPG) at 165 degrees C. The surfaces of the silver tubes were chemically modified by HPG, which was confirmed by FTIR of the silver tubes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fullerene/ionic-liquid composite was explored. Transmission Electron Microscopy (TEM) study showed that in the composite, C-60 mainly exists as nano-clusters, Raman spectrum proved that the composite formed only by physical Mix of C-60 and 1-Butyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), the combination did not change the chemical naturation of C-60. The electrochemical properties of the composite modified electrode, including the electrode reaction control function and the interfacial potential effect were studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A label-free and highly sensitive impedimetric aptasensor based on a polyamidoamine dendrimer modified gold electrode was developed for the determination of thrombin. Amino-terminated polyamidoamine dendrimer was firstly covalently attached to the cysteine functionalized gold electrode through glutaraldehyde coupling. Subsequently, the dendrimer was activated with glutaraldehyde, and amino-modified thrombin aptamer probe was immobilized onto the activated dendrimer monolayer film. The layer-by-layer assembly process was traced by surface plasmon resonance and electrochemical impedance spectroscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+. The experimental data have been analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms. The results showed that the biosorption equilibrium was well described by both the Langmuir and Redlich-Peterson isotherms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We developed a stable, sensitive electrochemiluminescence (ECL) biosensor based on the synthesis of a new sol-gel material with the ion-exchange capacity sol-gel to coimmobilize the Ru(bpy)(3)(2+) and enzyme. The partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) film acted as both an ion exchanger for the immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize gold nanoparticles (AuNPs). The AuNPs/PSSG/Ru(bpy)(3)(2+) film modified electrode allowed sensitive the ECL detection of NADH as low as 1 nM. Such an ability of AuNPs/PSSG/Ru(bpy)(3)(2+) film to promote the electron transfer between Ru(bpy)(3)(2+) and the electrode suggested a new, promising biocompatible platform for the development of dehydrogenase-based ECL biosensors. With alcohol dehydrogenase (ADH) as a model, we then constructed an ethanol biosensor, which had a linear range of 5 mu M to 5.2 mM with a detection limit of 12 nM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 mu A mM(-1) cm(-2) was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 mu M and a response time of 3 s, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work herein reports the approach for the simultaneous determination of heavy metal ions including cadmium (Cd(II)), lead (Pb(II)), and chromium (Cr(VI)) using a bismuth film electrode (BFE) by anodic stripping voltammertry (ASV). The BFE used was plated in situ. Due to the reduction of Cr(VI) with H2O2 in the acid medium, on one hand, the Cr(III) was produced and Cr(VI) was indirectly detected by monitoring the content of Cr(III) using square-wave ASV. On the other hand, Pb(II) was also released from the complex between Pb(II) and Cr(VI). Furthermore, the coexistence of the Cd(II) was also simultaneously detected with Pb(II) and Cr(VI) in this system as a result of the formation of an alloy with Bi. The detection limits of this method were 1.39 ppb for Cd(II), 2.47 ppb for Pb(II) and 5.27 ppb for Cr(VI) with a preconcentration time of 120 s under optimal conditions (S/N = 3), respectively. Furthermore, the sensitivity of this method can be improved by controlling the deposition time or by using a cation-exchange polymer (such as Nafion) modified electrode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)(3)(2+) immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.