202 resultados para Beta 2-microglobulin
Resumo:
A new compound KMgLa(PO4)(2), isotypic with monoclinic LaPO4, is reported. Its cell parameters have been determined from X-ray powder diffraction data. Crystallization occurs in the monoclinic space group P2(1)/n (No. 14) with a = 6.839(3) Angstrom, b = 7.066(1) Angstrom, c = 6.523(3) Angstrom, beta = 103.42(4)degrees, and Z = 2. It was found that the KMgLa(PO4)(2) phase was isostructural with monoclinic LaPO4. The difference between them was that half of the La atoms in LaPO4 were couplingly substituted with the same amount of Mg and K atoms. This isomorphous substitution was confirmed by IR and Eu3+-doped excitation and emission spectra and by elemental analysis of single crystals. The spectroscopic data were compared with those of LaPO4:Eu3+. (C) 1995 Academic Press, Inc.
Resumo:
Eight new compounds of (GeCH2CH (CH3) COOAr)(2)O-3 type were synthesized. Four of them were tested for antitumor activities against Hela cells in vitro, showing considerable tumor inhibitory activities.
Resumo:
[La(NO3)(3)(OH2)(2)(OHMe)(bipy).15-crown-5 is monoclinic, P2(1)/n, with a = 11.239(6), b = 19.302(7), c = 14.458(8) Angstrom, beta = 92.47(5)degrees, and D-calc = 1.63 g cm(-3) for Z = 4. In the complex, two nitrogen atoms (from bipy) and nine oxygen atom
Resumo:
The reactions of [Cp2Mo2(CO)4] (1) with 2,2'-dipyridyl disulphide (C5H4NS-)2, 8,8'-diquinolyl disulphide (C9H6NS-)2 and tetramethyl thiuram disulphide (Me2NC(S)S-)2 in toluene solution resulted in the cleavage of the Mo-Mo triple bond to yield molybdenum complexes [CpMo(CO)2(C5H4NS)] (2), [CpMo(CO)2(C9H6NS)] (3) and [CpMo(CO)2(S2CNMe2)] (4), respectively. The molecular structures of 2, 3 . O=PPh3 and 4 were determined by X-ray diffraction studies. Crystals of 2 are monoclinic, space group P2(1)/n, with Z = 4, in a unit cell of dimensions a = 6.448(1), b = 12.616(2), c = 14.772(2) angstrom, beta = 92.85(1)-degrees. The structure was refined to R = 0.028 and R(w) = 0.039 for 1357 observed reflections. Crystals of 3 . O=PPh3 are triclinic, space group P1BAR, with Z = 2, in a unit cell of dimensions a = 11.351(3), b = 13.409(3), c = 9.895(2) angstrom, alpha = 94.59(2), beta = 90.35(2), gamma = 78.07(2)-degrees. The structure was refined to R = 0.033 and R(w) = 0.037 for 3260 observed reflections. Crystals of 4 are monoclinic, space group P2(1)/a and Z = 4 with a = 12.468(5), b = 7.637(2), c = 13.135(4) angstrom, beta = 96.62(3). The structure was refined to R = 0.032 and R(w) = 0.042 for 1698 observed reflections. Each of complexes 2-4 contains a cyclopentadienyl ligand, a cis pair of carbonyls and a chelate ligand (S,N donor or S,S donor). All the compounds have distorted square-pyramid structures.
Resumo:
[(Me4C2Cp2SmCl.MgCl2.3THF)THF]2 was prepared by the reaction of Me4C2Cp2MgCl2.4THF (Cp=C5H4, THF = tetrahydrofuran) with SmCl3 in THF. The crystals belong to triclinic space group P-1 with a 12.149(3), b 13.187(4), c 13.810(5) angstrom, alpha 117.23(2), beta 94.07(2), gamma 62.86(2)-degrees, V = 1723.9(1.0) angstrom3. In the molecular structure of the title compound there is a symmetrical centre and a quadrilateral formed by SM, Mg, Cl1, Cl2 atoms. Two centroids of the cyclopentadienyls, bridged by a tetramethylethano group form with three bridging chlorine atoms (Cl1, Cl2, Cl1a) a pseudo-trigonal bipyramid around Sm. Three oxygen atoms of THF and three chlorine atoMS (Cl1, Cl2, Cl3) constitute a distorted octahedron around Mg.
Resumo:
catena-Poly[{pentaaqua(L-proline-O)-erbium-mu-(L-proline-O:O')} trichloride], {[Er(C5H9-NO2)2(H2O)5]Cl3}n, M(r) = 594.0, monoclinic, P2(1), a = 8.294 (1), b = 10.981 (3), c = 11.934 (3) angstrom, beta = 107.04 (2)degrees, V = 1039.2 (4) angstrom3, Z = 2, D(x) = 1.90 g cm-3, lambda(Mo Kalpha) = 0.71069 angstrom, mu = 45.2 cm-1, F(000) = 586, T = 298 K, R = 0.0244 for 1711 unique reflections [I > 3 sigma(I(o))]. The crystal consists of one-dimensional chains of infinite length in which one L-proline ligand bridges two neighboring Er ions, the other L-proline ligand being monodentate.
Resumo:
The half-open vanadocene, V[2,4-(CH3)2C5H5](C5H5)CO, was obtained by the reaction of V[2,4-(CH3)2C5H5](C5H5)PMe3 with CO in petroleum ether at room temperature. Its crystal structure was determined by X-ray diffraction technique. The crystal was monoclinic with space group P2(1)/n, a = 16.614(3), b = 7.636(1), c = 19.128(6) angstrom, beta = 99.92(2)-degrees, V = 2390.5(9) angstrom3, and Z = 8. The final R value was 0.043. The V(1)-CPD(1) (half) (PD = 2,4-(CH3)2C5H5) bonds were shorter (0.038 angstrom) than the V(1)-CCP(1) (half) (CP = C5H5) bonds, averaging 2.224(4) versus 2.262(4) angstrom, respectively. 4V[2,4-(CH3)2C5H5](C5H5)CO has been characterized by IR and EPR methods.
Resumo:
The reaction of LnCl3.2LiCl with 1 equiv of MeCpNa in THF gives the complexes [(THF)2Li(mu-Cl)2]2[MeCpLn(THF)] (Ln = Nd (1), La (2)) in good yield. These precursors react further with 2 equiv of LiNPh2 to produce the new complexes [Li(DME)3][MeCpLn(NPh2)3] (Ln = La (3), Pr (4), Nd (5)). They have been characterized by elemental analyses and IR and NMR spectra, as well as by structural analyses of 1 and 3. The chloride 1 crystallizes in the monoclinic space group P2(1)/n (No. 14) with a = 12.130 (5) angstrom, b = 17.343 (5) angstrom, c = 17.016 (5) angstrom, beta = 108.54 (3)-degrees, V = 3393.87 angstrom3, Z = 4, and D(c) = 1.45 g/cm3. Least-squares refinement led to a final R value of 0.051 (I greater-than-or-equal-to 3-sigma(I(o))) for 2004 independent reflections. Complex 3 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 18.335 (6) angstrom, b = 16.576 (5) angstrom, c = 17.461 (6) angstrom, beta = 96.04 (3)-degrees, V = 5277.17 angstrom3, D(c) = 1.26 g/cm3, Z = 4, and R = 0.057 (I greater-than-or-equal-to 2.5-sigma(I(o))) for 3378 reflections. The structure of 3 consists of discrete ion pairs [Li(DME)3]+ and [MeCpLa(NPh2)3]- with average La-N and La-C(ring) distances of 2.459 (8) and 2.84 (1) angstrom, respectively.
Resumo:
The crystal structure of [Mn(thiamine)Cl2(H2O)]2[thiamine]2Cl4.2H2O has been determined by X-ray diffraction methods. The compound contains a cyclic dimer of a complex cation with two thiamine ligands bridged by two Mn(II) ions across a crystallographic center of symmetry. Each Mn(II) is coordinated by two chloride atoms, a water molecule, a N(1') atom of the pyrimidine from a thiamine and an O(53) atom of the hydroxyethyl side chain from another thiamine. There are two free-base thiamine molecules related by a center of symmetry in the unit cell, which form a base-pair through the hydrogen bonds. Both the independent thiamine molecules in the asymmetric unit assume the common F conformation with phi-T = 10.0(9) and 3.6(10) and phi-P = 85.6(7) and 79.6(7), respectively. The compound provides a possible model for a metal-bridged enzyme-coenzyme complex in thiamine catalysis. Crystallographic data: triclinic, space group P1BAR, a = 12.441(4), b = 13.572(4), c = 11.267(3) angstrom, alpha = 103.15(2), beta 89.03(3), gamma = 115.64(2)-degrees, Z = 1, D(calc) = 1.524 g cm-3, and R = 0.050 for 3019 observed reflections with I > 3-sigma(I).
Resumo:
The intensity data of the title complex were collected at a low temperature of -90-degrees-C. The compound crystallizes in the monoclinic space group P2(1)/n, a = 17.504(2), b = 27.323 (5), c = 21.616(4) angstrom, beta = 104.49 (2)degrees, Z = 4. The structure was solved by Patterson and Fourier techniques and refined by least-squares to an R = 0.088 for 8320 independent reflections. The central Pr ion is bonded to eight oxygen atoms from two molybdosilicic heteropoly ligands to form a square antiprism. The Pr-O average distance is 2.44 (2) angstrom. Both molybdosilicic heteropoly ligands are of a defective alpha-Keggin structure.
Resumo:
This paper reports the results of the crystal and molecular structures, CI-MS and FAB-MS analyse of Cl3GeCH2CH2COOH and Cl3GeCH(CH3)CH2COOH. The characters and active parts of these molecules are also discussed
Resumo:
The reaction of GdCl3 with 1 equiv of NaC5Me5 generates a neutral complex C5Me5GdCl2(THF)3 and a novel complex {Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-2-Cl)3(mu-3-Cl)2}2.6THF whixh recrystallizes from THF in triclinic, the space group P1BAR with unit cell dimentions of a 12.183(4), b 13.638(6), c 17.883(7) angstrom, alpha-110.38(3), beta-94.04(3), gamma-99.44(3)-degrees, V 2721.20 angstrom-3 and D(calc) 1.43 g cm-3 for Z = 1. Least-squares refinement of 2170 observed reflections led to a final R value of 0.047. The title complex consists of two Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-3-Cl)3(mu-3-Cl)2 units bridged together via two mu-2-THF to Na coordination. Each Gd ion is surrounded by one C5Me5 ligand, two mu-3-Cl, two mu-2-Cl and one THF in a distorted octahedral arrangement with average Gd-C(ring) 2.686(33), Gd-mu-2-Cl 2.724(7), Gd-mu-3-Cl 2.832(8) and Gd-O 2.407(11) angstrom. The sodium ion coordinates to two bridging THF, two mu-2-Cl and two mu-3-Cl to form a distorted octahedron with average Na-mu-2-O, Na-mu-2-Cl and Na-mu-3-Cl of 2.411(21), 2.807(15) and 2.845(12) angstrom, respectively.
Resumo:
In order to investigate the possible effects of the ecological environment on photosynthetic activity and the major light harvesting complex, the oxygen evolution rates and composition of phycobilisome from marine red alga Porphyra yezoensis Ueda and freshwater red alga Compsopogon coeruleus (Balbis) Montagne, which could grow and reproduce under salinity up to 35 ppt, were studied. The results showed that the oxygen evolution rate of P. yezoensis in seawater was significantly higher than that of C. coeruleus in freshwater, and P. yezoensis tolerated inorganic ions at a relatively higher concentration than C. coeruleus. Moreover, the phycoerythrin (PE) of P yezoensis was R-phycoerythrin containing alpha, beta, and gamma subunits comprised phycoerythrobilin and phycourobilin. In contrast, the PE from C. coeruleus consisted of alpha, beta, and gamma subunits comprised only phycoerythrobilin but not phycourobilin, suggesting that the PE from C. coeruleus was of a new type.
Resumo:
C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.