234 resultados para Band-stop filters (BSF)
Resumo:
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.
Resumo:
High-spin levels of 189Pt have been studied with the in-beam γ-spectroscopy method via the 176Yb(18O,5n) reaction at the beam energies of 88 and 95 MeV. The previously known νi-131/2 band has been confirmed, and its unfavored signature branch extended up to the 13/2+ state. Within the framework of the triaxial particle-rotor model, the νi-113/2 band is suggested to be associated with the 11/2[615] configuration, and to have triaxial deformation.