186 resultados para Absorbing-state phase transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain is one of the primary material conditions of the human survival and the grain production concerns the stability and development of the society directly. The regional patterns influence greatly on the grain production and the rational production distribution the regional comparative advantages and promotes grain production. This thesis starts with summarizing of the characteristics of changes and the overall trend of regional pattern of grain production of our country since 1949. Then it carries on network analyses to the factors, which influences the evolvement of regional grain production patterns of our country. And finally it gives some proposals to the grain production distribution in the future. The main content includes: Firstly, Reviewing the regional evolvement of grain production in our country, and analyzing the changes of the regional pattern of grain production of our country on the provincial scale and county scale separately, since 1949, especially since the reform and opening up policy. The main grain production areas are acting an important position in ensuring the national grain security, so this thesis analyses the main matter of the main grain production areas, forecasts the grain production situation in the future, and selects the Northeastern main grain production areas as the typical area to carry on the positive research. Secondly, this thesis analyzes the origin causes from two respects of natural and social economy of the regional evolvement pattern of grain production in China. Thirdly, based on the summarizing to the status of the regional pattern of the grain production, this thesis proposes the precept of the grain production distribution in the future in our country. Therefore, the areas of three major cereal crops, rice, wheat and corn, are confirmed on the basis of the comparative advantages. Finally, this thesis puts forward the security system of guaranteeing the grain production progressing steady in China. According to the above analysis, some conclusions have been achieved as follows: (1) The grain gross production gets on extricating itself from awkward position frequently while fluctuating greatly annually since 1949 in China. (2) Since the reform, its traditional regional pattern of grain production, the most of which was concentrated in the south area, has changed rapidly. China's center of gravity of grain production has shifted from the south to the north, and on the belts of latitude, the grain production has represented a trend of focusing to the middle area in China. (3) The main grain production areas play a very important role in ensuring China's food security. With their relative severe situation of the problems of agriculture, rural area and peasant, China has carried out a series of measures, which aim at improving the food-producing conditions of the main grain production areas, and enhancing the grain yields there. Under this condition, a forecast of the producing amount of the main grain production areas under the nation's self-supplying rate of over 95% shows that the increasing provision production in these areas can meet the demand of the country. (4) The natural and social economic factors influence together on the changes of the grain production regional pattern. Along with the state system transition and progress of agricultural science and technology, the regional pattern of grain production is affected heavier by the agricultural policy and technological elements. (5) The grain production will be concentrated to the middle province in the future, which economic development level being medium-sized; According to crop allocation, although the rice superiority production area located in the South, its comparative advantage index is little in some degree. Meanwhile, the wheat and corn superiority production areas are in the North mainly and its scale superiority and production level advantage are all comparatively obviously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat capacities of Wood alloy have been measured with an automatic adiabatic calorimeter over the temperature range of 80 similar to 360 K. The thermodynamic data of solid-liquid phase transition have been obtained from the heat capacity measurements. The melting temperature, enthalpy and entropy of fusion of the substance are 345.662 K, 18.47 J.g(-1) and 0.05343 J.g(-1).K-1, respectively. The necessary thermal data are provided for the low temperature thermodynamic study of the alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-temperature heat capacities of trifluoroacetamide were precisely determined with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 404 K. A solid-to-solid phase transition, a fusion and a phase transition from a liquid crystalline phase to fully liquid phase have been observed at the temperatures of 336.911+/-0.102, 347.622+/-0.094 and 388.896+/-0.160 K, respectively. The molar enthalpies of these phase transitions as well as the chemical purity of the substance were determined to be 5.576+/-0.004, 11.496+/-0.007, 1.340+/-0.005 kJ mol(-1) and 99.30 mol%, respectively, on the basis of the heat capacity measurements. The molar entropies of the three phase transitions were calculated to be 16.550+/-0.012, 33.071+/-0.029 and 3.447+/-0.027 J mol(-1) K-1, respectively. Further researches of the thermochemical properties for this compound have been carried out by means of TG and DSC techniques. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low temperature heat capacities of N-(2-cyanoethyl)aniline were measured with an automated adiabatic calorimeter over the temperature range from 83 to 353 K. The temperature corresponding to the maximum value of the apparent heat capacity in the fusion interval, molar enthalpy and entropy of fusion of this compound were determined to be 323.33 +/- 0.13 K, 19.4 +/- 0.1 kJ mol(-1) and 60.1 +/- 0.1 J K-1 mol(-1), respectively. Using the fractional melting technique, the purity of the sample was determined to be 99.0 mol% and the melting temperature for the tested sample and the absolutely pure compound were determined to be 323.50 and 323.99 K, respectively. A solid-to-solid phase transition occurred at 310.63 +/- 0.15 K. The molar enthalpy and molar entropy of the transition were determined to be 980 +/- 5 J mol(-1) and 3.16 +/- 0.02 J K-1 mol(-1), respectively. The thermodynamic functions of the compound [H-T - H-298.15] and [S-T - S-298.(15)] were calculated based on the heat capacity measurements in the temperature range of 83-353 K with an interval of 5 K. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were established for the azeotropic mixture. A glass transition was observed at (111.9 +/- 1.1) K. The phase transitions took place at (179.26 +/- 0.77) and (269.69 +/- 0.14) K corresponding to the solid-liquid phase transitions of. n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was established, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat capacities (C-p) of five types of gasohol (50 wt % ethanol and 50 wt % unleaded gasoline 93(#) (E50), 60 wt % ethanol and 40 wt % unleaded gasoline 93(#) (E60), 70 wt % ethanol and 30 wt % unleaded gasoline 93(#) (E70), 80 wt % ethanol and 20 wt % unleaded gasoline 93(#) (E80), and 90 wt % ethanol and 10 wt % unleaded gasoline 93(#) (E90), where the "93" denotes the octane number) were measured by adiabatic calorimetry in the temperature range of 78-320 K. A glass transition was observed at 95.61, 96.14, 96.56, 96.84, and 97.08 K for samples from the E50, E60, E70, E80, and E90 systems, respectively. A liquid-solid phase transition and a solid-liquid phase transition were observed in the respective temperature ranges of 118-153 and 155-163 K for E50, 117-150 and 151-164 K for E60, 115-154 and 154-166 K for E70, 113-152 and 152-167 K for E80, and 112-151 and 1581-167 K for E90. The polynomial equations of Cp and the excess heat capacities (C-p(E)), with respect to the thermodynamic temperature, were established through least-squares fitting. Based on the thermodynamic relationship and the equations obtained, the thermodynamic functions and the excess thermodynamic functions of the five gasohol samples were derived.