365 resultados para 6-59A
Resumo:
The crystal structure of the title compound, C12H10ClF3O3, was determined in order to establish the configuration of the C double bond. The compound was found to be the Z isomer. The crystal structure is dominated by Cl center dot center dot center dot O halogen bonds [Cl center dot center dot center dot O = 3.111 (3) angstrom], as well as C-H center dot center dot center dot O and C-H center dot center dot center dot F hydrogen-bonding interactions, that connect neighboring molecules into a three-dimensional supramolecular network.
Resumo:
In this work, an electrochemiluminescence (ECL) reagent bis(2,2'-bipyridine)(5,6-epoxy-5,6-dihydro-[1,10]phenanthroline)ruthenium complex (Ru-1) was synthesized, and its electrochemical and ECL properties were characterized. The synthesis of Ru-1 was confirmed by IR spectra, element analysis, and H-1 NMR spectra. For further study, its UV-vis absorption and fluorescence emission spectra were investigated. Ru-1 also exhibited quasi-reversible Ru-II/Ru-III redox waves in acetonitrile solution. The aqueous ECL behaviors of Ru-1 were also studied in the absence and in the presence of tripropylamine.
Resumo:
The first soluble conjugated poly(2,6-anthrylene) with 9,10-diphenyl-anthracene as the repeating unit is reported; photophysical studies reveal that this polymer represents a novel well-conjugated system.
Resumo:
Pure (W0.4Al0.6)C powder of about 1 mu m in diameter was sintered by the high pressure sintering (HPS) process without the addition of any binder phase. The microstructure, Vickers micro hardness and density versus the sintering time and temperature are well described. The most suitable sintering condition under pressure of 4.5 GPa is 1873 K for 8 min. Under this sintering condition, the hardness can reach 2295 kg mm(-2) and the relative density can reach 98.6%.
Resumo:
Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.
Resumo:
A supramolecular complex [Cu(phen)(2)H2O]{[Cu(phen)(H2O)](2)[C6AS]}center dot 2.5H(2)O (phen = 1,10'-phenanthroline and C6AS = p-sulfonatocalix[6]arene) has been synthesized under hydrothermal condition, and characterized by IR spectroscopy, TG analysis and single crystal X-ray diffraction. In the structure, unprecedented 1D ({[Cu(phen)(H2O)](2)[C(6)AS]}(2-))(n) coordination chains (exactly being belts) are stacked into some 2D layers by the pi center dot center dot center dot pi stacking interactions, which are further interconnected into a 3D extended structure by hydrogen bonding.
Resumo:
The facile, rapid, and effective synthesis of coordination polymer La(1,3,5-BTC)(H2O)(6) has been realized via direct precipitation at room temperature. It is found that the crystal structure is of monoclinic, space group Cc. The doped Eu3+ or Tb3+ ions samples have the same phase and exhibit red and green emissions under UV light excitation, respectively.
Resumo:
Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) approximate to Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) call be easily achieved by varying of the metal center.
Resumo:
A poly(9,10-bisalkynyl-2,6-anthrylene) (PI) and five poly(9,10-bisarylethynyl-2,6-anthrylene)s(P2-P6) as soluble conjugated polymers have been synthesized and characterized. All polymers exhibit two-dimensional conjugated characteristics as indicated by absorption spectra comprising multi-bands in the range of 300-600 nm. Compared with P1, polymers P2-P5, which contain phenylethynyl substituents with the longer conjugation than alkynyl groups, exhibit a similar to 60 nm red shift of absorption edge. However, further increasing the conjugation length of the arylethynyl substituents (longer than phenylethynyl) has only a no effect on the conjugation of the polymer chains, while comparing the absorption spectra of P6 with those of P2-P5.
Resumo:
Seven supramolecular compounds comprising p-sulfonatocalix[6]arene and transition metals, {[Cu(Imz)-(phen)(H2O)](4)[C6AS]}center dot 10H(2)O (1), {[Cu(Imz)(2)(phen)](2)[Cu(Imz)(phen)(H2O)(2)](2)[C6AS]}center dot 13.3H(2)O (2), {[M(phen)(2)(H2O)]-[(M(phen)(2)](2)[C6AS]}center dot nH(2)O (3 and 4) (3: M = Co and n = 29.6; 4: M = Zn and n = 29.9), {[Cu(phen)(2)](4)[C6AS]}(2)center dot 13H(2)O (5), [H3O](2)[Co(phen)(3)](2)[C6AS]center dot 10.7H(2)O(6), and [Cu(phen)(2)(H2O)](2){[Cu(phen)(2)](2)[C6AS]}center dot 8H(2)O(7)(phen = 1,10-phenanthroline, C6AS = p-sulfonatocalix[6]arene, Imz = imidazole), have been synthesized by a hydrothermal method and structurally characterized by IR spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), and single crystal X-ray diffraction.
Resumo:
The replacement of coronene monolayer on Au (111) by 6-mercapto-1-hexanol (MHO) was studied by in situ scanning tunneling microscopy (STM) in solutions. It was found that the rate of replacement depends strongly on the concentration of MHO. The replacement finished within a second at a higher concentration of MHO. At a lower concentration, the slow replacement could be followed by in situ STM. The replacement occurred initially near the elbow position of reconstructed Au (111) with the formation of pits in a single or several missing molecules. With the proceeding of replacement, these small pits expanded, and the surrounding coronene molecules were gradually substituted by MHO, which developed into ordered domains within a spatial confined environment. Meanwhile, the reconstruction of Au (111) was lifted. The replacement expanded fast along the reconstruction lines in the domain. For the fast replacement, a (root 3 x root 3) R30 degrees adlattice was observed, while a c(4 x 2) superlattice was observed for the slow replacement.
Resumo:
The electrochemical properties of a series of structurally related fullerooxazoles, [6,6] cyclic phenylimidate C-60 (1), 1,2-benzal-3-N-4-O-cyclic phenylimidate C-60 (2), and 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (3), are described, and the spectroscopic characterizations of their anionic species are reported. The results show that compounds I and 2 undergo retro-cycloaddition reactions that lead to the formation of C-60 and C61HPh, respectively, upon two-electron-transfer reduction. However, compound 3 demonstrates much more electrochemical stability as no retro-cycloaddition reaction occurs under similar conditions. Natural bond orbital (NBO) calculations on charge distribution show there is no significant difference among the dianions of 1, 2, and 3, indicating that the electrochemical stability of 3 is unlikely to be caused by the charge distribution difference of the dianions of three compounds. Examination on the crystal structure of compound 3 reveals close contacts of the C-H group with the heteroatoms (N and O) of cyclic phenylimidate, suggesting the existence of C-H center dot center dot center dot X (X = N, O) intramolecular hydrogen bonding among the addends, which is further confirmed by NBO analysis.
Resumo:
Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.