183 resultados para 317-U1353C
Resumo:
The synthesis of zeolite X is characterized by UV Raman spectroscopy, NMR spectroscopy, and X-ray diffraction. UV Raman spectra of the liquid phase of the synthesis system indicate that AI(OH); species are incorporated into silicate species, and the polymeric silicate species are depolymerized into monomeric silicate species during the early stage of zeolite formation. An. intermediate species possessing Raman bands at 307, 503, 858 and 1020 cm(-1) is detected during the crystallization ill the solid phase transformation. The intermediate species is attributed to the beta cage, the secondary building unit of zeolite X. A model for the formation of zeolite X is proposed, which involves four-membered rings connecting to each other via six-membered ring to form beta cages, then the beta cages interconnect via double six-membered rings to form the framework of zeolite X. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A theoretical method to calculate multidimensional Franck-Condon factors including Duschinsky effects is described and used to simulate the photoelectron spectrum of the anion SO. Geometry optimizations and harmonic vibrational frequency calculations have been performed on the XA(1) state of SO2 and (XB1)-B-2 state of SO2. Franck-Condon analyses and spectral simulation were carried out on the first photoelectron band of SO2. The theoretical spectra obtained by employing CCSD(T)/6-31 I+G(2d,p) values are in excellent agreement with the experiment. In addition, the equilibrium geometric parameters, r(c)(OS) = 0.1508 +/- 0.0005 nm and theta(e)(O-S-0) = 113.5 +/- 0.5 degrees, of the (XB1)-B-2 state of SO2, are derived by employing an iterative Franck-Condon analysis procedure in the spectral simulation. (c) 2005 Elsevier B.V. All rights reserved.