227 resultados para 2 Trapped Ions
Resumo:
The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The structure of phenylalanine transfer ribonucleic acid (tRNA(Phe)) in solution was explored by H-1 NMR spectroscopy to evaluate the effect of lanthanide ion on the structural and conformational change. It was found that La3+ ions possess specific effects on the imino proton region of the H-1 NMR spectra for yeast tRNA(Phe). The dependence of the imino proton spectra of yeast tRNA(Phe) as a function of La3+ concentration was examined, and the results suggest that the tertiary base pair G(15). C-48, which is located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by La3+ (shifted to downfield by as much as 0.35). Base pair U-8. A(14) in yeast tRNA(Phe), which are stacked on G(15). C-48, was also affected by added La3+ when 1 similar to 2 Mg2+ were also present. Another imino proton that may be affected by La3+ in yeast tRNA(Phe) is that of the tertiary base pair G(19). C-56. The assignment of this resonance in yeast tRNA(Phe) is tentative since it is located in the region of highly overlapping resonances beween 12.6 and 12.2. This base pair helps to anchor the D-loop to the T Psi C loop. The binding of La3+ caused conformational change of tRNA, which is responsible for shifts to upfield or downfield in H-1 NMR spectra.
Resumo:
The dependence of the differential capacitance of polypyrrole doped with several typical dopants on potential is presented, which shows that the differential capacitance varies with the potential, the doped polypyrroles with electroactive ions give the largest capacitance near their formal potentials, which is attributed to the mutual media for electron transfer between polypyrrole and electroactive dopants. The existence of two conducting phases was observed in the complex capacitance plots. The electroactive anions act as an intra-conducting-phase medium for electron transfer, the electroactive cations act as an inter-conducting-phase medium for electron transfer. The mutual media between polypyrrole and redox dopants lead to the increase of the discharging time.
Resumo:
C-2 and LaC2+ were studied using Hartree-Fock(HF), B3LYP (Becke 3-paremeter-Lee-Yang-Parr) density functional method, second-order Moller-Plesset perturbation (MP2) and coupled cluster singles and doubles with non-iterative triples(CCSD(T)) methods. The basis set employed was LANL1DZ. Geometries, vibrational frequencies and other quantities were reported. The results showed that for C-2, all the methods performed well for low spin state (singlet), while only HF and B3LYP remained so for high spin state (triplet). For LaC2+, four isomers were presented and fully optimized. The results suggested that linear isomers with C-infinity v and D-infinity h symmetries were predicted to be saddle points on the energy surface for all the methods, while for isomers with C-2 upsilon and C-s symmetries, they were local minima except C-2 upsilon at B3LYP level, and were isoenergetic at HF, MP2 and CCSD(T) levels, near isoenergetic at B3LYP level. From the differences between HOMO and LUMO, it is also known that the isomers with C-2 upsilon and C-s symmetries offer the largest values and therefore correspond to the most stable structure. For La-C bond lengths, B3LYP gives the shortest, the order is B3LYP
Resumo:
Some novel binary and ternary complexes of rare earth ions (Gd, Eu, Tb) with N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline were synthesized by homogenous precipitation and characterized by elemental analysis, IR spectra, UV/Vis spectra, and thermal analysis. The phosphorescence spectra and lifetimes of gadolinium complexes were measured, and the triplet state energies of N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline as well as the energy transfer efficiencies between N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline were determined. The photophysical properties such as luminescence and intramolecular energy transfer between the rare earth center ions and the ligands and between ligands are discussed.
Resumo:
The effect of lanthanum ions on the structural and conformational change of yeast tRNA(Phe) was studied by H-1 NMR. The results suggest that the tertiary base pair (G-15)(C-48), which was located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by adding La3+ and shifted 0.33 downfield. Based pair (U-8)(A-14), which is associated with a tertiary interaction, links the base of the acceptor stem to the D-stem and anchors the elbow of the L structure, shifted 0.20 upfield. Another imino proton that may be affected by La3+ in tRNA(Phe) is the tertiary base pair (G-19)(C-56). The assignment of this resonance is tentative since it is located in the region of highly overlapping resonances between 12.6 and 12.2. This base pair helps to anchor the D-loop to the T psi C loop.
Resumo:
The crystal structure of the title compound, bis[tris(2,2'-bipyridyl-N,N')nickel(II)] cyclo-tetravanadate undecahydrate, contains a centrosymmetric [V4O12](4-) anion, which has an eight-membered ring structure formed by four VO4 tetrahedra sharing vertices, and two complex cations containing octahedrally-coordinated Ni-II ions. The anion and coordinated Ni-II ions are isolated and make up anion and cation layers, respectively. The Ni-N distances range from 2.077(3) to 2.112(2)Angstrom and the V-O distances range from 1.621(2) to 1.803(2)Angstrom.
Resumo:
Extraction resins, of the type of;levextrel, (which is a collective term for styrene/divinylbenzene based copolymers of predominantly macroporous structure that contain a selective extractant) are important for the recovery and separation of metal ions, as they combine features of solvent extraction and ion exchange resins. This paper presents the results of the adsorption of heavy rare earth ions (Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 0.2 mol/L ionic strength and 50 degrees C by the extraction resin containing di (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272) and the chromatographic separation of (Er(III), Tm(III) and Yb(III)). Technological separation products, with purity and yield of Tm2O3 >99.97%, >80%, Er2O3 >99.9%, >94% and Yb2O3 >99.8%, >80% respectively, have been obtained from a feed having the composition Tm2O3 60%, Er2O3 10%, and Yb2O3 3%, the others 27%. The distribution coefficients, extraction equilibrium constants and separation factors have been determined as a function of acidity, loading of the resin and rare earths, flow rates and column ratios. The resolutions and efficiencies of separation of Er/Tm/Yb each other have been calculated. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
Photophysical properties (e.g. luminescence and energy transfer) of binary and ternary complexes of Gd3+, Eu3+, and Tb3+ with aminobenzoic acids and 1,10-phenanthroline were studied in connection with their spectroscopic characterization. Intramolecular energy transfer between center ions and ligands as well as between ligands is discussed in detail.
Resumo:
Four new compounds AgLnW(2)O(8) (Ln = Eu, Gd, Tb and Dy) are prepared by solid-state reactions. They crystallize with a scheelite-related monoclinic symmetry. Infrared (IR) spectra show complicated absorption transitions in the region of 1000-400 cm(-1) that are similar to those of AgLnMo(2)O(8). Broad excitation and emission bands of the tungstate group are observed in AgGdW2O8 and AgTbW2O8 with a large Stokes shift, 12 573 and 12 387 cm(-1), respectively. Excitation and emission spectra of AgLnW(2)O(8) (Ln = Eu, Gd and Tb) show that energy transfer from the tungstate to EU3+, Gd3+ and Tb3+ occurs and that Eu3+ ions occupy a single crystallographic site with the C-2 Site symmetry. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
Endohedral metallofullerenes Ce@C-82, Ce-2@C-80, Nd@C-82 and Nd-2@C-80 undergo gas phase ion/molecule reactions with the ion system from self-chemical ionization of vinyl acetate, and exohedral derivatives are thus generated, A new heterocycle is formed from metallofullerenes and a C2H3O+ cation, Endohedral metallofullerenes show much higher reactivities than empty fullerenes during the association and the charge and proton transfer processes, The strong electron-donating character of endohedral metallofullerenes is due to their unique super-atom-like electronic structures. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
Mixed oxides Ln(2)CuO(4+/-lambda)(Ln = La, Pr, Nd, Sm, Gd) with K2NiF4 structure were prepared. Their crystal structures were studied with XRD and IR spectra. Meanwhile, the average valence of Cu ions and nonstoichiometric oxygen (lambda) were determined through chemical analyses. Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated. Results show that the catalysis of these mixed oxides has close relation with their structures and composition. Substitution of A site atom in Ln(2)CuO(4+/-lambda) has a great influence on their catalysis in the phenol hydroxylation.
Resumo:
The reaction of diglycolic acid, O(CH2CO2H)(2), with Cu(NO3)(2) . H2O and lanthanoid nitrate hydrate produces a series of novel Ln-Cu mixed metal complexes, [Ln(2)CU(3){O(CH2CO2)(2)}(6)]. nH(2)O (Ln = La, Nd, n = 9; Ln = Er, n = 6), which have been characterized by elemental analysis, i.r. spectroscopy, magnetic measurements and X-ray crystallography. The Ln(3+) and Cu2+ ions are connected by the carboxylate groups of the ligands, resulting in the formation of a complicated network.
Resumo:
Two types of macromolecular free radicals similar to CH2CONH(C) over dotHCH(2) similar to (a) and similar to CH2(C) over dot = O (b) trapped in irradiated polyamide-1010 (PA1010) and PA1010 filled with neodymium oxide (Nd2O3) were characterized by an ESR approach. It is found that (a) is prevailingly trapped in the fold surface of the lamellae and (b) in the amorphous phase. This result suggests that trapped radicals mainly exist in the non-crystalline phases. The effect of the fold surface area of the lamellae on the behavior of the trapped radicals is discussed in this paper. Whether for the specimens with similar crystallinities, but different crystallite sizes, or for those with the same concentration of neodymium oxide, but different crystallinities, radical (a) exists dominantly in the specimen with a larger fold surface area of the lamellae. Under certain circumstances, radical (a) can transform into radical (b), obviously for a specimen with a larger fold surface area of the lamellae. It means that the fold surface area of the lamellae plays an important role in the transformation of radical (a) to (b). (C) 1997 Elsevier Science Ltd.
Resumo:
Three new compounds, AgLnW(2)O(8) (Ln(3+)=Eu, Gd or Tb), have been prepared by a solid-state reaction and crystallize with a scheelite-related monoclinic symmetry. Their IR spectra show absorption transitions in the region 1000-400 cm(-1) similar to KLnW(2)O(8). Broad excitation and emission bands of the tungstate group with a large Stokes shift (12573 cm(-1)) are observed in AgGdW2O8. Excitation and emission spectra of AgLnW(2)O(8) (Ln=Eu or Tb) show that energy transfer from tungstate to Eu and Tb occurs and that Eu3+ ions occupy a unique crystallographic site with C-2 site symmetry.