214 resultados para traditional Tibetan medicine
Resumo:
The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
We investigated experimental warming and simulated grazing ( clipping) effects on rangeland quality, as indicated by vegetation production and nutritive quality, in winter-grazed meadows and summer- grazed shrublands on the Tibetan Plateau, a rangeland system experiencing climatic and pastoral land use changes. Warming decreased total aboveground net primary productivity ( ANPP) by 40 g . m(-2) . yr(-1) at the meadow habitats and decreased palatable ANPP ( total ANPP minus non- palatable forb ANPP) by 10 g . m(-2) . yr(-1) at both habitats. The decreased production of the medicinal forb Gentiana straminea and the increased production of the non- palatable forb Stellera chamaejasme with warming also reduced rangeland quality. At the shrubland habitats, warming resulted in less digestible shrubs, whose foliage contains 25% digestible dry matter ( DDM), replacing more digestible graminoids, whose foliage contains 60% DDM. This shift from graminoids to shrubs not only results in lower- quality forage, but could also have important consequences for future domestic herd composition. Although warming extended the growing season in non- clipped plots, the reduced rangeland quality due to decreased vegetative production and nutritive quality will likely overwhelm the improved rangeland quality associated with an extended growing season.Grazing maintained or improved rangeland quality by increasing total ANPP by 20 - 40 g . m(-2) . yr(-1) with no effect on palatable ANPP. Grazing effects on forage nutritive quality, as measured by foliar nitrogen and carbon content and by shifts in plant group ANPP, resulted in improved forage quality. Grazing extended the growing season at both habitats, and it advanced the growing season at the meadows. Synergistic interactions between warming and grazing were present, such that grazing mediated the warming- induced declines in vegetation production and nutritive quality. Moreover, combined treatment effects were nonadditive, suggesting that we cannot predict the combined effect of global changes and human activities from single- factor studies.Our findings suggest that the rangelands on the Tibetan Plateau, and the pastoralists who depend on them, may be vulnerable to future climate changes. Grazing can mitigate the negative warming effects on rangeland quality. For example, grazing management may be an important tool to keep warming- induced shrub expansion in check. Moreover, flexible and opportunistic grazing management will be required in a warmer future.
Resumo:
A simple and sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection and mass spectrometric identification has been developed for analysis of 30 long-chain and short-chain free Fatty acids (FFAs). The fatty acids were derivatized to their esters with 1-[2-(p-toluenesulfonate)ethyl]-2-phenylimidazole-[4,5-f]-9,10-phenanthrene (TSPP) in N,N-dimethylformamide (DMF) at 90 degrees C with anhydrous K2CO3 as catalyst. A mixture Of C-1-C-30 fatty acids was completely separated within 60 min by gradient elution on a reversed-phase C-8 column. Qualitative identification of the acids was performed by atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) in positive-ion mode. The fluorescence excitation and emission wavelengths were 260 and 380 nm, respectively. Quantitative determination of the 30 acids in two Tibetan medicines Gentiana straminea and G. dahurica was performed. The results indicated that the medicines contained many FFAs. Linear correlation coefficients for the FFA derivatives were > 0.9991. Relative standard deviations (RSDs, n = 6) for the fatty acid derivatives were < 3%. Detection limits (at a signal-to-noise ratio of 3:1) were 3.1-38 fmol. When the fatty acid derivatives were determined in the two real samples results were satisfactory and the sensitivity and reproducibility of the method were good.
Resumo:
During the growing seasons of 2002 and 2003, biomass productivity and diversity were examined along an altitudinal transect on the south-western slope of Beishan Mountain, Maqin County (33 degrees 43'-35 degrees 16'N, 98 degrees 48'-100 degrees 55'E), Qinghai-Tibetan Plateau. Six altitudes were selected, between 3840 and 4435 m. Soil organic matter, soil available N and P and environmental factors significantly affected plant-species diversity and productivity of the alpine meadows. Aboveground biomass declined significantly with increasing altitude (P < 0.05) and it was positively and linearly related to late summer soil-surface temperature. Belowground biomass (0 - 10-cm depth) was significantly greater at the lowest and highest altitudes than at intermediate locations, associated with water and nutrient availabilities. At each site, the maximum belowground biomass values occurred at the beginning and the end of the growing seasons (P < 0.05). Soil organic matter content, and available N and P were negatively and closely related to plant diversity (species richness, Shannon-Wiener diversity index, and Pielou evenness index).
Resumo:
The complete mitochondrial DNA (mtDNA) cytochrome b gene (1140 bp) was sequenced in Herzenstein macrocephalus and Gymnocypris namensis and in 13 other species and sub-species (n = 22), representing four closely related genera in the subfamily Schizothoracinae. Conflicting taxonomies of H. macrocephalus and G. namensis have been proposed because of the character instability among individuals. Parsimony, maximum likelihood and Bayesian methods produced phylogenetic trees with the same topology and resolved several distinctive clades. Previous taxonomic treatments, which variously placed these two species of separate genera or as sub-species, are inconsistent with the mtDNA phylogeny. Both H. macrocephalus and G. namensis appear in a well-supported clade, which also includes nine species of Schizopygopsis, and hence should be transferred to the genus Schizopygopsis. Morphological changes are further illustrated, and their adaptive evolution in response to the local habitat shifts during the speciation process appears to be responsible for conflicting views on the systematics of these two species and hence the contrasting taxonomic treatments. These species are endemic to the Qinghai-Tibetan Plateau, a region with a history of geological activity and a rich diversity of habitats that may have result in the parallel and reversal evolution of some morphological characters used in their taxonomies. Our results further suggest that speciation and morphological evolution of fishes in this region may be more complex than those previously expected. (c) 2007 The Authors Journal compilation (c) 2007 The Fisheries Society of the British Isles.
Resumo:
Ochotona curzoniae and Microtus oeconomus are the native mammals living on the Qinghai-TibetanPlateau of China. The molecular mechanisms of their acclimatization to the Plateau-hypoxia remain unclear. Expressions of hepatic hypoxia-inducible factor (HIF)-1 alpha, insulin-like growth factor-I (IGF-I)/IGF binding protein (BP)-1(IGFBP-1; including genes), and key metabolic enzymatic genes [lactate dehydrogenase (LDH)-A/isocitrate dehydrogenase (ICD)] are compared in Qinghai-Tibetan- Plateau mammals andsea- level mice after injection of CoCl2 (20, 40, or 60 mg/ kg) and normobaric hypoxia (16.0% O-2, 10.8% O-2, and 8.0% O-2) for 6 h, tested by histochemistry, Western blot analysis, ELISA, and RT-PCR. Major results are CoCl2 markedly increased 1) HIF-1 alpha only in mice, 2) hepatic and circulatory IGF-I in M. oeconomus, 3) hepatic IGFBP-1 in mice and O. curzoniae, and 4) LDH-A but reduced ICD mRNA in mice (CoCl2 20 mg/kg) but were unchanged in the Tibetan mammals. Normobaric hypoxia markedly 1) increased HIF-1 alpha and LDH-A mRNA in mice and M. oeconomus (8.0% O-2) not in O. curzoniae, and 2) reduced ICD mRNA in mice and M. oeconomus (8.0% O-2) not in O. curzoniae. Results suggest that 1) HIF-1 alpha responsiveness to hypoxia is distinct in lowland mice and plateau mammals, reflecting a diverse tolerance of the three species to hypoxia; 2) CoCl2 induces diversities in HIF-1, IGF-I/IGFBP-1 protein or genes in mice, M. oeconomus, and O. curzoniae. In contrast, HIF-1 mediates IGFBP-1 transcription only in mice and in M. oeconomus (subjected to severe hypoxia); 3) differences in IGF-I/IGFBP-1 expressions induced by CoCl2 reflect significant diversities in hormone regulation and cell protection from damage; and 4) activation of anaerobic glycolysis and reduction of Krebs cycle represents strategies of lowland-animals vs. the stable metabolic homeostasis of plateau- acclimatized mammals.
Resumo:
We measured ecosystem CO2 fluxes for an alpine shrubland on the north-eastern Tibetan Plateau, Qinghai, China. The study is to understand (1) the seasonal variation of CO2 flux and (2) how environmental factors affect the seasonality of CO2 exchange in the alpine ecosystem. Daytime ecosystem respiration was extrapolated from the relationship between temperature and nighttime CO2 fluxes under high turbulent conditions.Seasonal patterns of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange followed highly the seasonal change of aboveground biomass in the alpine shrubland. The net ecosystem CO2 exchange was mainly controlled by the variation of photosynthetic photon flux density, while the ecosystem respiration was closely correlated to the soil temperature at 5-cm depth. Integrated values of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange for the period from November 1, 2002 to October 31 2003 were estimated to be 1418, 1155 and 222 g CO2 m(-2) yr(-1), respectively.
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.
Resumo:
A simple and sensitive method for the determination of free fatty acids (FFAs) using acridone-9-ethyl-p-toluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB-C-8 column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at lambda(ex) 404 and lambda(em) 440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post-column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positive-ion detection mode. Nineteen FFAs from the extract of Lomatogonium rotatum are sensitively determined. The results indicate that the plant Lomatogonium rotatum is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C-14, C-16, and C-18. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are > 0.9989, and detection limits (at signal-to-noise of 3: 1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are < 2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of Lomatogonium rotatum with satisfactory results.
Resumo:
Survival of small mammals in winter requires proper adjustments in physiology, behavior and morphology. The present study was designed to examine the changes in serum leptin concentration and the molecular basis of thermogenesis in seasonally acclimatized root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. In January root voles had lower body mass and body fat mass coupled with higher nonshivering thermogenesis (NST) capacity. Consistently, cytochrome c oxidase activity and mitochondrial uncoupling protein-1 (UCP1) protein contents in brown adipose tissues were higher in January as compared to that in July. Circulating level of serum leptin was significantly lower in winter and higher in July. Correlation analysis showed that serum leptin levels were positively related with body mass and body fat mass while negatively correlated with UCP1 protein contents. Together, these data provided further evidence for our previous findings that root voles from the Qinghai-Tibetan plateau mainly depend on higher NST coupled with lower body mass to enhance winter survival. Further, fat deposition was significantly mobilized in cold winter and leptin was potentially involved in the regulation of body mass and thermogenesis in root voles. Serum leptin might act as a starvation signal in winter and satiety signal in summer.
Resumo:
Adaptation to hypoxia is regulated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor consisting of an oxygen-regulated a-subunit and a constitutively expressed beta-subunit. How animals living on Qinghai-Tibetan plateau adapt to the extreme hypoxia environment is known indistinctly. In this study, the Qinghai yak which has been living at 3000-5000 m attitude for at least two millions of years was selected as the model of high hypoxia-tolerant adaptation species. The HIF-1 alpha ORFs (open reading frames) encoding for two isoforms of HIF-1 alpha have been cloned from the brain of the domestic yak. Its expression of HIF-1 alpha was analyzed at both mRNA and protein levels in various tissues. Both its HIF-1 alpha mRNA and protein are tissue specific expression. Its HIF-1 alpha protein's high expression in the brain, lung, and kidney showed us that HIF-1 alpha protein may play an important role in the adaptation to hypoxia environment. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai-Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m(-2) yr(-1) in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (R-e) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0 degrees C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light-use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime R-e in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of R-e in comparison with the other years. These results suggest that (1) the Qinghai-Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one-third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth.
Resumo:
To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q(10)) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q(10) decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m(-2). Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.
Resumo:
Our goal was to determine the effect of diets with different crude protein (CP) contents and metabolizable energy (W) levels on daily live-weight gain, apparent digestibility, and economic benefit of feedlot yaks on the Tibetan plateau during winter. Yaks were either 2- or 3-years old and randomly selected from the same herd. The 3-year-olds were placed into one of two experimental groups (A and B) and a control (CK1), and the two-year-olds were placed into one of three experimental groups (C, D and E) and a control (CK2) (N per group = 5). Yak in the control groups were allow graze freely, while those in the experimental groups yaks were fed diets higher in contains crude protein and metabolizable energy through a winter period inside a warming shed. Results indicated that live-weight gain of treatment groups was higher than their respective controls during experiment, and that daily live-weight gain of every 10 days among different treatments was significant difference (P < 0.05). In addition, apparent digestibility of different diets was linearly and positively related to feedlotting time, and feed conversion efficiency for A, C, D and E groups was quadratically related to feedlotting time (P < 0.01), however, feed conversion efficiency for B group was linearly and positively related to feedlotting time (P < 0.05). The economic benefit was 1.15 for A, 1.89 for B, 1.16 for C, 1.54 for D, and 4,52 for E. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The distribution and species diversity of plant communities along a 600 km transect through the northeastern Tibetan Plateau (32 degrees 42'-35 degrees 07' N, 101 degrees 02'-97 degrees 38' E) with altitudes from 3255 to 4460 m are described. The transect started from the Youyi Bridge of Banma through Dari, Maqin and Maduo to Zaling Lake. The data from 47 plots along the transect are summarized and analyzed. The mean annual temperature, the mean annual rainfall and the length of growing season decreases from 2.6 to -4.5 degrees C, from 767.2 to 240.1 mm, from 210 to 140 days, respectively, along the transect from the southeastern Banma to northwestern Zaling Lake. The number of vascular plant species recorded in 47 plots is 242 including 2 tree, 34 shrub, 206 herb species. Main vegetation types on the transect from southeast to northwest are: Sabina convallium forest, Picea likiangensis forest, Pyracantha fortuneana + Spiraea alpina shrub, Hippophae neurocarpu shrub, Sibiraea angustata + Polygonum viviparum shrub, Stellera chamaejasme herb meadow, Potentilla fruticosa + Salix obscura + Carex sp. Shrub, Kobresia capillifolia meadow, P. froticosa + Kobresia humilis shrub, Caragana jubata + S. obscura shrub, Kobresia tibetica meadow, Kobresia pygmaea meadow, K. pygmaea + Stipa purpurea steppe meadow, Stipa purpurea steppe. Plant richness and diversity index all showed a decreasing trend with increasing of elevation along transect from southeast to northwest. Detailed information on altitudinal ranges and distribution of the alpine vegetation, vascular flora and environments over the alpine zone at northeastern Tibetan Plateau provides baseline records relevant to future assessment of probable effects of global climate changes.