211 resultados para self-assembly, aromatic amides, supramolecular polymers, OPBA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a solvothermal route to the synthesis of SrF2 hierarchical flowerlike structures based on thermal decomposition of single source precursor (SSP) of strontium trifluoroacetate in benzylamine solvent. These flowerlike superstructures are actually composed of numerous aggregated nanoplates, and the growth process involves the initial formation of spherical nanoparticles and subsequent transformation into nanoplates. which aggregated together to form microdisks and finally flowerlike superstructures. The results demonstrate the important role of benzylamine in the formation of well-defined SrF2 superstructures, not only providing size and shape control to form nanoplates but also contributing to the self-assembly behavior of nanoplates to build into flower-like superstructures. Additionally, the photoluminescence properties of the obtained SrF2 superstructures are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel pi-conjugated coil-rod-coil triblock oligomers containing optoelectronic active oligoaniline segments were synthesized. The block oligomer can self-assemble into diverse aggregating morphologies including spherical micelles and thin-layer vesicles in THF, which is found associated with the removing of the protecting groups of oligoaniline segments. A possible mechanism was proposed to explain the self-assembly behavior changes in which chain conformation variation of the aniline segments initiated from deprotection of the nitrogen atoms is pointed to be the key factor that dominates the transition process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the functional nucleic acids studied, adenine-rich nucleic acids have attracted attention due to their critical roles in many biological processes and self-assembly-based nanomaterials, especially deoxyribonucleic acids (abbreviated as poly(dA)). Therefore the ligands binding to poly(dA) might serve as potential therapeutic agents. Coralyne, a kind of planar alkaloid, has been firstly found that it could bind strongly to poly(dA). This work herein reports an approach for visual sensing of the coralyne-poly(dA) interaction. This method was based on the coralyne inducing poly(dA) into the homo-adenine DNA duplex and the difference in electrostatic affinity between single-stranded DNA and double-stranded DNA with gold nanoparticles (GNPs). Furthermore, we applied the recognition process of the interaction between coralyne and poly(dA) into specific coralyne detection with the assistance of certain software (such as Photoshop). A linear response from 0 to 728 nM was obtained for coralyne, and a detection limit of 91 nM was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a general method for incorporation of nanoparticles into polyelectrolyte multilayer (PEM) thin films by utilizing the excess charges and associated counterions present in the PEMs. Silver ions were introduced directly into multilayers assembled from poly(diallyldimethylammonium chloride) (PDDA) and poly(styrene sulfonate) (PSS), (PDDA/PSS)(n), by a rapid ion exchange process, which were then converted into silver nanoparticles via in situ reduction to create composite thin films. The size and the content of the nanoparticles in the film call be tuned by adjusting the ionic strength in the polyelectrolyte solutions used for the assembly. Spatial control over the distribution of the nanoparticles in the PEM was achieved via the use of multilayer heterostructure containing PDDA/PSS bilayer blocks assembled at different salt concentrations. Because excess charges and counterions are always present in any PEM, this approach can be applied to fabricate a wide variety of composite thin Films based on electrostatic self-assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqueous conducting polyaniline dispersion was prepared employing acidic phosphate ester bearing hydrophilic ethylene glycol segment as dopant, and conducting film with electrical conductivity of 25 S/cm was obtained from the dispersion. Ordered self-assembly lamellar structure with interlamellar distance of 1.2 nm was observed in the film, which consisted of alternating layers of rigid polyaniline chain and flexible phosphate ester side chains, where the phosphate side chain layer was separated by two rigid polyaniline layers. The lamellar structure leading to high conducting film was formed due to the confinement of polyaniline chain by crystallizable phosphate side chain, since the electrical conductivity decreased by four orders of magnitude once the dopant side chain crystalline was destroyed. The crystallizable side chain forced lamellar structure is expected to be a new chance for highly conducting polyaniline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile and wet-chemical approach was employed to control synthesis of self-organizing, hyperbranched nanoporous Au microsheet with high quality in bulk quantity. This method produced nanoporous Au microsheets with a thickness of 7-15 nm. The microsheets were composed of irregularly interconnected planar Au nanoplates with interstices, i.e. nanopores of 10-50 nm. And the nanoporous Au microsheets were enveloped in 10-30 nm thick polyaniline (PANI) sheaths. The morphology of the nanostructured Au composites could also be easily tuned by changing the concentration of aniline and chlorauric acid. The dendritic and epitaxial growth of nanoporous Au microsheet was believed as the diffusion-limited process confined in the lamellar emulsion phase through self-assembly of aniline and dodecylsulfate. The solution reaction proceeded at a mild condition (room temperature and aqueous solutions), and less toxic reagents were employed instead of extreme toxic and corrosive chemicals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for preparing nanoelectrode ensembles based on semi-interpenetrating network (SIN) of multi-walled carbon nanotubes (MWNTs) on gold electrode through phase-separation method is initially proposed. Individual nanoelectrode owns irregular three-dimensional MWNTs networks, which is denoted as SIN-MWNTs. On the as-prepared SIN-MWNTs nanoelectrode ensembles, the assembled MWNTs clusters in nanoscale serve as individual nanoelectrode and the electroinactive lipid networks located on the top of alkanethiol monolayer are used as a shielding layer. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), tapping-mode atomic force microscopy (TM-AFM) and scanning electron microscopy (SEM) were used to characterize the as-prepared SIN-MWNT nanoelectrode ensembles. Experimental results indicate that the well-defined nanoelectrode ensembles were prepared through self-assembly technology. Meantime, sigmoid curves in a wide scanning range can be obtained in CV experiments. This study may pave the way for the construction of truly nanoscopic nanoelectrode arrays by bottom-up strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novelty approach to self-assembling stereocomplex micelles by enantiomeric PLA-PEG block copolymers as a drug delivery carrier was described. The particles were encapsulated by enantiomeric PLA-PEG stereocomplex to form nanoscale micelles different from the microspheres or the single micelles by PLLA or PDLA in the reported literatures. First, the block copolymers of enantiomeric poly(L-lactide)-poly(ethylene-glycol) (PLLA-PEG) and poly(D-lactide)-poly(ethylene-glycol) (PDLA-PEG) were synthesized by the ring-opening polymerization of L-lactide and D-lactide in the presence of monomethoxy PEG, respectively. Second, the stereocomplex block copolymer micelles were obtained by the self-assembly of the equimolar mixtures of enantiomeric PLA-PEG copolymers in water. These micelles possessed partially the crystallized hydrophobic cores with the critical micelle concentrations (cmc) in the range of 0.8-4.8 mg/l and the mean hydrodynamic diameters ranging from 40 to 120 nm. The micelle sizes and cmc values obviously depended on the hydrophobic block PLA content in the copolymer.Compared with the single PLLA-PEG or PDLA PEG micelles, the cmc values of the stereocomplex micelles became lower and the sizes of the stereocomplex micelles formed smaller. And lastly, the stereocomplex micelles encapsulated with rifampin were tested for the controlled release application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale, uniform plasmid deoxyribonucleic acid (DNA) network has been successfully constructed on 11-mercaptoundecanoic acid modified gold (111) surface using a self-assembly technique. The effect of DNA concentration on the characteristics of the DNA network was investigated by atomic force microscopy. It was found that the size of meshes and the height of fibers in the DNA network could be controlled by varying the concentration of DNA with a constant time of assembly of 24 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

inorganic-organic hybrid nanoparticles multilayer films were fabricated by extending the method of nucleation and growth of particles in polymer assemblies. The polyelectrolyte matrix was constructed by layer-by-layer self-assembly method. Synthesis of polyoxometalate nanoparticles was achieved by alternately dipping the precursor polyelectrolyte matrix into AgNO3 and H4SiW12O40 aqueous solutions. Repeating the above synthesis process, Ag4SiW12O40 nanoparticles with controllable diameters of 20 to 77 nm were synthesized in the multilayer films in-situ. UV-vis absorption spectra indicate that the nanoparticles grew gradually in the synthesis process. Transmission electron microscopy was used to observe the size and morphology of the nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly processes of the rod-coil diblock oligomer thin film of tetra-aniline (TANI)-block-poly(L-lactide) (PLLA) with different film thicknesses induced in the coil-selective solvent of acetone vapor at room temperature were studied. The morphologies of the oligomer films were determined by the film thickness. For the thicker film (232 nm), the nonextinct concentric ring-banded textures could form. While for the thinner and appropriate film (about 6 nm), multistacked diamond-shaped appearances with the periodic thickness being about 8.5 nm(6-nm-thick extended PLLA chain and 2.5-nm-thick p-pi conjugating TANI bimolecular layer) formed. The possible formation models of those two regular morphologies were presented in detail.