169 resultados para resistence genes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal location of the 5S ribosomal RNA gene was studied in the eastern oyster, Crassostrea virginica Gmelin. using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos, and the FISH probe was made by PCR (polymerase chain reaction) amplification of the 5S rRNA gene and labeled by incorporation of digoxigenin-1 1-dUTP during PCR. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. Two pairs of FISH signals were observed on metaphase chromosomes. Karyotypic analysis showed that the 5S rRNA gene cluster is interstitially located on short arms of chromosomes 5 and 6. On chromosome 5, the 5S rRNA genes were located immediately next to the centromere, whereas on chromosome 6, they were located approximately half way between the telomere and the centromere. Chromosomes of C. virginica are difficult to identify because of their similarities in size and arm ratio, and the chromosomal location of 5S rRNA genes provides unambiguous identification of chromosomes 5 and 6. Previous studies have mapped the major rRNA gene cluster (18S-5.8S-28S) to chromosome 2. and this study shows that the 5S rRNA gene cluster is not linked to the major rRNA genes and duplicated during evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Karyotype and chromosomal location of the major ribosomal RNA genes were studied in the hard clam (Mercenaria mercenaria Linnaeus) using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos. Internal transcribed spacers (ITS) between major RNA genes were amplified and used as FISH probes. The probes were labeled with digoxigenin-11-dUTP by polymerase chain reaction and detected with fluorescein-labeled anti-digoxigenin antibodies. FISH with the ITS probes produced two to four signals per nucleus or metaphase. M. mercenaria had a haploid number of 19 chromosomes with a karyotype of seven metacentric, four metacentric or submetacentric, seven submetacentric, and one submetacentric or subtelocentric chromosomes (7M + 4M/SM + 7SM + 1SM/ST). Two ITS loci were observed: one located near the centromere on the long arm of Chromosome 10 and the other at the telomere of the short arm of Chromosome 12. FISH signals on Chromosome 10 are strong and consistent, while signals on Chromosome 12 are variable. This study provides the first karyotype and chromosomal assignment of the major RNA genes in M. mercenaria. Similar studies in a wide range of species are needed to understand the role of chromosomal changes in bivalve evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal location of the major ribosomal RNA genes (rRNA) were studied in the dwarf surfclam (Mulinia lateralis, Say) using fluorescence in situ hybridization (FISH). FISH probes for the rRNA genes were made by polymerase chain reaction (PCR), labeled with digoxigenin-11-dUTP and detected with fluorescein-labeled antidigoxigenin antibodies. Mulinia lateralis had a diploid number of 38 chromosomes and all chromosomes were telocentric. FISH with the rRNA probe produced positive and consistent signals on two pairs of chromosomes: Chromosome 15 with a relative length of 4.6% and Chromosome 19, the shortest chromosome. Both loci were telomeric. The rRNA location provides the first physical landmark of the M. lateralis genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular diagnosis is playing an increasingly important role in the rapid detection and identification of pathogenic organisms in clinical samples. The genetic variation of ribosomal genes in bacteria offers an alternative to culturing for the detection and identification of these organisms. Here 16S rRNA and 16S-23S rRNA spacer region genes were chosen as the amplified targets for single-strand conformation polymorphism (SSCP) and restriction fragment length polymorphism (RFLP) capillary electrophoresis analysis and bacterial identification. The multiple fluorescence based SSCP method for the 16S rRNA gene and the RFLP method for the 16S-23S rRNA spacer region gene were developed and applied to the identification of pathogenic bacteria in clinical samples, in which home-made short-chained linear polyacrylamide (LPA) was used as a sieving matrix; a higher sieving capability and shorter analysis time were achieved than with a commercial sieving matrix because of the simplified template preparation procedure. A set of 270 pathogenic bacteria representing 34 species in 14 genera were analyzed, and a total of 34 unique SSCP patterns representing 34 different pathogenic bacterial species were determined. Based on the use of machine code to represent peak patterns developed in this paper, the identification of bacterial species becomes much easier.