176 resultados para random medium
Resumo:
Nickel tungstate (NiWO4) nano-particles were successfully synthesized at low temperatures by a molten salt method, and characterized by Xray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet visible spectra techniques (UV-vis), respectively. The effects of calcining temperature and salt quantity on the crystallization and development of NiWO4 crystallites were studied. Experimental results showed that the well-crystallized NiWO4 nano-particles with about 30 nm in diameter could be prepared at 270 degrees C with 6:1 mass ratio of the salt to NiWO4 precursor. XRD analysis confirmed that the product was a pure monoclinic phase of NiWO4 with wolframite structure. UV-vis spectrum revealed that NiWO4 nano-particles had good light absorption properties in both ultraviolet and visible light region. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Two triazole derivatives, 3,4-dichloro-acetophenone-O-1'-(1',3',4'-triazolyl)-methaneoxime (4-DTM) and 2,5-dichloro-acetophenone-O-1'-(1',3',4'-triazolyl)-methaneoxime (5-DTM) were synthesized, and the inhibition effects for mild steel in 1 M HCl solutions were investigated by weight loss measurements, electrochemical tests and scanning electronic microscopy (SEM). The weight loss measurements showed that these compounds have excellent inhibiting effect at a concentration of 1.0 x 10(-3) M. The potentiodynamic polarization experiment revealed that the triazole derivatives are inhibitors of mixed-type and electrochemical impedance spectroscopy (EIS) confirmed that changes in the impedance parameters (R-ct and C-dl) are due to surface adsorption. The inhibition efficiencies obtained from weight loss measurements and electrochemical tests were in good agreement. Adsorption followed the Langmuir isotherm with negative values of the free energy of adsorption Delta G(ads)(o). The thermodynamic parameters of adsorption were determined and are discussed. Results show that both 4-DTM and 5-DTM are good inhibitors for mild steel in acid media.
Resumo:
提出了一种基于信道估计的RS纠错编码改进算法,该算法可以自适应地根据外界条件和环境对传输信道的干扰变化实时地调节编码系统的数据冗余量。仿真与完整的分析结果证实了该改进算法有效地改善了RS编码算法的传输效率;并且通过实际应用表明:良好的性能,高容错性适应于该通信系统的多种传输信道,具有很强的实用性。
Resumo:
Debris Landslide is one of the types of landslides with the widest distribution, largest quantity, and the closest relationship with engineering construction. It is also one of the most important types of landslides that can cause disaster. This kind of landslide often occurs in the loose slopes which are made up of loose congeries formed by earth filling, residual soil, slope wash, dilapidation, landslide or full weathered material of hard rock. Rainfall is always the chief inducing factor of debris Landslide. Therefore, to research stability of debris Landslide during rainfall not only has important theoretical significance for understanding developing law and deformation and failure mechanism of debris landslide, but also has important practical significance for investigating, appraising, forecasting, preventing and controlling debris landslides. This thesis systematically summarized the relationships between rainfall and landslide, the method to survey water table in the landslides, the deformation and failure mechanism of debris landslide, and the progress in the stability analysis of landslides based on the analyses of data collected widely at home and abroad. The problems in the study of the stability of debris landslide during rainfall was reviewed and discussed. Due to the complicated geological conditions and the random rainfall conditions, the research on the landslides' stability must be based on engineering geological qualitative analysis. Through the collection of the data about the Panxi region and the Three Gorges Reservoir region, the author systematically summarized the engineering geological conditions, hydro-geological condition, distribution characteristics of stress field in the slope, physical and mechanical properties and hydro-mechanical properties of debris. In the viewpoint of dynamics of soil water and hydromechanics, physical process of rainfall to supply groundwater of debris landslides can be divided into two phases, i.e. non-saturated steady infiltrating phase and saturated unsteady supplying phase. The former can be described by mathematical model of surface water infiltration while the latter can be described by equivalent continuous medium model of groundwater seepage. With regard to specific hydrological geology system, we can obtain the dynamic variation law of water content, water table, landslide stability of rock and soil mass, along with quantity and duration of rainfall after the boundary condition on hydrological geology has been ascertained. This is a new way to study the response law of groundwater in the landslides during rainfall. After wet face of rock and soil mass connects with ground water table, the raising of water table will occur due to the supply of rainfall. Then interaction between ground water and rock and soil mass will occur, such as the action of physics, water, chemistry and mechanics, which caused the decrease of shearing strength of sliding zone. According to the action of groundwater on rock and soil mass, a concise mechanical model of debris landslide’s deformation was established during rainfall. The static equilibrium condition of landslide mass system was achieved according to the concise mechanical model, and then the typical deformation and failure process and failure mode of debris landslide during rainfall were discussed. In this thesis, the former limiting equilibrium slice method was modified and improved based on shearing strength theory of , a stability analysis program of debris landslide was established and developed taking account of the saturated-unsaturated seepage, by introducing the shearing strength theory of unsaturated soil mass made by (1978). The program has reasonable data storage and simple interface and is easy to operate, and can be perfectly used to carry out sensitivity analysis of influencing factors of landslides' stability, integrated with the program of Office Excel. The design of drainage engineering are always bases on empirical methods and is short of effective quantitative analysis and appraise, therefore, the conception of critical water table of debris landslide was put forward. For debris landslides with different kinds of slide face in the engineering practice, a program to search the critical water table of debris landslide was developed based on native groundwater table. And groundwater table in the slope should be declined below the critical water table in the drainage works, so the program can be directly used to guide drainage works in the debris landslide. Taking the slope deformation body in the back of former factory building of Muli Shawan hydroelectric power station as an example, a systematic and detailed research on debris landslides' stability during rainfall was researched systematically, the relationship among quantity of rainfall, water table and stability of slope was established, the debris landslides' stability in process of rainfall from dynamic viewpoint was analyzed and researched.
Resumo:
Rock heterogeneity plays an important role in rock fracturing processes. However, because fracturing is a dynamic process and it is very difficult to quantify materials' heterogeneity, most of the theories dealing with local failure were based on the homogeneity assumption, very few involving stress distribution heterogeneity and successive local failure due to rock heterogeneity. Therefore, based on various references, the author studied the laws and mechanism of influences of heterogeneity on rock fracturing processes, under the frame of the project "Study on Associate Mechanism between Rock Mass Fracture and Strength Failure", funded by Nation Natural Science Fund. the research consists of such aspects as size effect correction to rock fracture parameters, SEM (Scanning Electron Microscope) real-time observation on rock samples under different loads, micro-hardness testing, and numerical simulating based on microstructure. There are some important research results as followed: 1. Unifying formula for nonlinear and non-singularity correction, simplifying the complex process of correcting size effect on rock fracture toughness. 2. Using the methods of micro-hardness testing mineral grain and random jointing micrograph digitizing mineral slice, preliminarily solving the problems of numerical simulating and quantitatively describing the heterogeneous strength and its distribution rules, which has certain innovation and better practicability. 3. Based on SEM real-time observation, studying the micro-process of fracturing in marble, sandstone, granite, and mushroom stone samples with premanufactured cracks under tension, pure-shear and compression-shear conditions. Strength Failure was observed: there was some kind failure occurred before Fracture Failure in marble and sandstone samples with double cracks under pure-shearing. It is believed that the reason of strength failure developing is that stress concentrations is some locations are larger than that near the end of pre-manufactured cracks. 4. Based on the idea that rock macro-constitute is composed of complex microstructure, the promising method used to handle heterogeneity considers not only the heterogeneity of the rock medium, but also the heterogeneity of the rock structure. 5. Putting forward two types of rock strength failure: medium strength failure induced by heterogeneity of rock medium and structure strength failure induced by heterogeneity rock structure. 6. By evaluating potential fracture cell with proper failure priority, the numerical simulating method solved the problem of simulating the coextensive strength failure and fracture failure with convention strength failure rules. The result of numerical analysis shows that the influence of heterogeneity on rock fracturing processes is evident. The sinuosity of the rock fracture-propagation path, and the irregular fluctuation of loading displacement curve, is mainly controlled by the heterogeneity of rock medium.
Resumo:
With the development of oil and gas exploration, the exploration of the continental oil and gas turns into the exploration of the subtle oil and gas reservoirs from the structural oil and gas reservoirs in China. The reserves of the found subtle oil and gas reservoirs account for more than 60 percent of the in the discovered oil and gas reserves. Exploration of the subtle oil and gas reservoirs is becoming more and more important and can be taken as the main orientation for the increase of the oil and gas reserves. The characteristics of the continental sedimentary facies determine the complexities of the lithological exploration. Most of the continental rift basins in East China have entered exploration stages of medium and high maturity. Although the quality of the seismic data is relatively good, this areas have the characteristics of the thin sand thickness, small faults, small range of the stratum. It requests that the seismic data have high resolution. It is a important task how to improve the signal/noise ratio of the high frequency of seismic data. In West China, there are the complex landforms, the deep embedding the targets of the prospecting, the complex geological constructs, many ruptures, small range of the traps, the low rock properties, many high pressure stratums and difficulties of boring well. Those represent low signal/noise ratio and complex kinds of noise in the seismic records. This needs to develop the method and technique of the noise attenuation in the data acquisition and processing. So that, oil and gas explorations need the high resolution technique of the geophysics in order to solve the implementation of the oil resources strategy for keep oil production and reserves stable in Ease China and developing the crude production and reserves in West China. High signal/noise ratio of seismic data is the basis. It is impossible to realize for the high resolution and high fidelity without the high signal/noise ratio. We play emphasis on many researches based on the structure analysis for improving signal/noise ratio of the complex areas. Several methods are put forward for noise attenuation to truly reflect the geological features. Those can reflect the geological structures, keep the edges of geological construction and improve the identifications of the oil and gas traps. The ideas of emphasize the foundation, give prominence to innovate, and pay attention to application runs through the paper. The dip-scanning method as the center of the scanned point inevitably blurs the edges of geological features, such as fault and fractures. We develop the new dip scanning method in the shap of end with two sides scanning to solve this problem. We bring forward the methods of signal estimation with the coherence, seismic wave characteristc with coherence, the most homogeneous dip-sanning for the noise attenuation using the new dip-scanning method. They can keep the geological characters, suppress the random noise and improve the s/n ratio and resolution. The rutine dip-scanning is in the time-space domain. Anew method of dip-scanning in the frequency-wavenumber domain for the noise attenuation is put forward. It use the quality of distinguishing between different dip events of the reflection in f-k domain. It can reduce the noise and gain the dip information. We describe a methodology for studying and developing filtering methods based on differential equations. It transforms the filtering equations in the frequency domain or the f-k domain into time or time-space domains, and uses a finite-difference algorithm to solve these equations. This method does not require that seismic data be stationary, so their parameters can vary at every temporal and spatial point. That enhances the adaptability of the filter. It is computationally efficient. We put forward a method of matching pursuits for the noise suppression. This method decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. It can extract the effective signal from the noisy signal and reduce the noise. We introduce the beamforming filtering method for the noise elimination. Real seismic data processing shows that it is effective in attenuating multiples and internal multiples. The s/n ratio and resolution are improved. The effective signals have the high fidelity. Through calculating in the theoretic model and applying it to the real seismic data processing, it is proved that the methods in this paper can effectively suppress the random noise, eliminate the cohence noise, and improve the resolution of the seismic data. Their practicability is very better. And the effect is very obvious.
Resumo:
Repeated-batch cultures of strawberry cells (Fragaria ananassa cv. Shikinari) subjected to four medium-shift procedures (constant LS medium, constant B5 medium, alternation between LS and B5 starting from LS and alternation between LS and B5 starting from B5) were investigated for the enhanced anthocyanin productivity. To determine the optimum period for repeated batch cultures, two medium-shift periods of 9 and 14 days were studied, which represent the end of the exponential growth phase and the stationary phase. By comparison with the corresponding batch cultures, higher anthocyanin productivity was achieved for all the repeated-batch cultures at a 9-day medium-shift period. The average anthocyanin productivity was enhanced 1.7-and 1.76-fold by repeated-batch cultures in constant LS and constant B5 medium at a 9-day shift period for 45 days, respectively. No further improvement was observed when the medium was alternated between LS (the growth medium) and B5 (the production medium). Anthocyanin production was unstable at a 14-day shift period regardless of the medium-shift procedures. The results show that it is feasible to improve anthocyanin production by a repeated-batch culture of strawberry cells.
Resumo:
An oxygen permeable mixed ion and electron conducting membrane (OPMIECM) was used as an oxygen transfer medium as well as a catalyst for the oxidative dehydrogenation of ethane to produce ethylene. O2- species transported through the membrane reacted with ethane to produce ethylene before it recombined to gaseous O-2, so that the deep oxidation of the products was greatly suppressed. As a result, 80% selectivity of ethylene at 84% ethane conversion was achieved, whereas 53.7% ethylene selectivity was obtained using a conventional fixed-bed reactor under the same reaction conditions with the same catalyst at 800 degreesC. A 100 h continuous operation of this process was carried out and the result indicates the feasibility for practical applications.
Resumo:
Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.