260 resultados para electrochemical impedance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we developed an electrochemical method for the detection of hydrazine based oil palladium nanoparticle/carbon nanofibers (Pd/CNFs). Pd/CNFs were prepared by electrospinning technique and subsequent thermal treatments. The electrocatalytic behaviors of Pd/CNFs modified glassy carbon electrode (Pd/CNF-GCE) for hydrazine oxidation were evaluated by cyclic voltammetry (CV), an obvious and well-defined oxidation peak appeared at -0.32 V (vs. Ag/AgCl). The mechanism of the oxidation of hydrazine at Pd/CNF-GCE was also studied, which demonstrated an irreversible diffusion-controlled electrode process and a four-electron transfer involved in the overall reaction. Furthermore, the wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained utilizing differential pulse voltammetry (DPV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during electrochemical redox process. A mixed transfer method was presented to analyse the abnormal change of resonant frequency based on the simultaneous insertion/extraction of different ions. The results indicate that the migration of HSO4- anions was indispensable in the redox process of the heteropolyan ions in a I mol/L H2SO4 solution and played a key role in the abnormal change of the resonant frequency. Such a change was attributed to different packing densities derived by means of differently immobilized methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent heteroleptic Cu-I complexes based on asymmetrical iminephosphine ligands exhibit improved electrochemical and photochemical stability as compared to the analogous complexes based on traditional diimine or diphosphine ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic nanoparticles (NPs) with attractive electronic, optical, magnetic, thermal and catalytic properties have attracted great interest due to their important applications in physics, chemistry, biology, medicine, materials science and interdisciplinary fields. Biomolecule-NP hybrid systems, which combine recognition and catalytic properties of biomolecules with electronic, optical, magnetic and catalytic properties of NPs, are particularly new materials with synergistic properties originating from the components of the hybrid composites. The biomolecule-NP hybrid system has excellent prospects for interfacing biological recognition events with electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide thatis most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphological control of nanomaterials is of great interest due to their size and shape-dependent chemical and physical properties and very important applications in many fields such as biomedicine, sensors, electronics and others. In this paper, we reported a simple strategy for synthesizing gold nanowire assembling architecture at room temperature. It is found that two important factors, the proper volume ratio of ethanol to water and poly(vinyl pyrrolidone) (PVP), will play important roles in synthesizing flower-like short gold nanowire assembling spheres. Furthermore, the obtained flower-like gold assembling spheres with high surface-to-volume ratio have been employed as enhancing materials for electrochemical sensing H2O2. The present electrochemical sensing platform exhibited good electrocatalytic activity towards the reduction of H2O2. The detection limit for H2O2 was found to be 1.2 mu M, which was lower than certain enzyme-based biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical measurement of respiratory chain activity is a rapid and reliable screening for the toxicity on microorganisms. Here, we investigated in-vitro effects of toxin on Escherichia coli (E. coli) that was taken as a model microorganism incubated with ferricyanide. The current signal of ferrocyanide effectively amplified by ultramicroelectrode array (UMEA), which was proven to be directly related to the toxicity. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. The electrochemical responses to 3,5-dichlorophenol (DCP) under the incubation times revealed that the toxicity reached a stable level at 60 min, and its 50% inhibiting concentration (IC50) was estimated to be 8.0 mg L-1. At 60 min incubation, the IC50 values for KCN and As2O3 in water samples were 4.9 mg L-1 and 18.3 mg L-1, respectively. But the heavy metal ions, such as Cu2+ Pb2+ and Ni2+, showed no obvious toxicity on E. coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)(6)](3-) and KCl. Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer-by-layer technique. The thus-prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a simple, label-free and regenerative method was proposed to study the interaction between aptamer and small molecule by using methylene blue (MB+) as an electrochemical indicator. A thiolated capture probe containing twelve bases was firstly self-assembled on gold electrode by gold-sulfur affinity. Aptamer probe containing thirty two bases, which was designed to hybridize with capture DNA sequence and specifically recognize adenosine, was then immobilized on the electrode surface by hybridization reaction. MB+ was abundantly adsorbed on the aptamer probe by the specific interaction between MB+ and guanine base in aptamer probe. MB+-anchored aptamer probe can be forced to dissociate from the sensing interface after adenosine triggered structure switching of the aptamer. The peak current of MB+ linearly decreased with the concentration of adenosine over a range of 2 x 10 (8)- x 10 (6) M with a detection limit of 1 x 10 (8) M. In addition, we examined the selectivity of this electrochemical biosensor for cytidine, uridine and guanosine that belonged to the nucleosides family and possessed 1 similar structure with adenosine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel Dawson-type polyoxometalate supramolecular architecture of the formula [4,4'-H(2)bipy](2.5)center dot[4,4'-Hbipy]center dot[P2W18O62]center dot 6.25H(2)O (4,4'-bipy = 4,4'-bipyridine) has been hydrothermally synthesised and characterised by means of elemental analysis, IR, CV and X-ray single-crystal diffraction. X-ray crystallography indicates that the title compound consists of Dawson-type polyoxoaions [P2W18O62](6-), water molecules and 4,4'-bipy units. The polyoxoanion clusters together with 4,4'-bipy units and water molecules to construct the three-dimensional supramolecular network through hydrogen bonds. The crystal structure analyses reveal that water molecules and 4,4'-bipy units play the important role on the packing arrangements of crystals. Cyclic voltammetry shows that the title compound exhibits three chemically reversible steps

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work herein reports the approach for the simultaneous determination of heavy metal ions including cadmium (Cd(II)), lead (Pb(II)), and chromium (Cr(VI)) using a bismuth film electrode (BFE) by anodic stripping voltammertry (ASV). The BFE used was plated in situ. Due to the reduction of Cr(VI) with H2O2 in the acid medium, on one hand, the Cr(III) was produced and Cr(VI) was indirectly detected by monitoring the content of Cr(III) using square-wave ASV. On the other hand, Pb(II) was also released from the complex between Pb(II) and Cr(VI). Furthermore, the coexistence of the Cd(II) was also simultaneously detected with Pb(II) and Cr(VI) in this system as a result of the formation of an alloy with Bi. The detection limits of this method were 1.39 ppb for Cd(II), 2.47 ppb for Pb(II) and 5.27 ppb for Cr(VI) with a preconcentration time of 120 s under optimal conditions (S/N = 3), respectively. Furthermore, the sensitivity of this method can be improved by controlling the deposition time or by using a cation-exchange polymer (such as Nafion) modified electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a fast and simple method, named the potentiostatic electrodeposition technique, to deposit metal particles on the planar surface for application in metal-enhanced fluorescence. The as-prepared metallic surfaces were comprised of silver nanostructures and displayed a relatively homogeneous morphology. Atomic force microscopy and UV-visible absorption spectroscopy were used to characterize the growth process of the silver nanostructures on the indium tin oxide (ITO) surfaces. A typical 20-fold enhancement in the intensity of a nearby fluorophore, [Ru(bpy)(3)](2+), could be achieved on the silvered surfaces. In addition, the photostability of [Ru(bpy)(3)](2+) was found to be greatly increased due to the modification of the radiative decay rate of the fluorophore. It is expected that this electrochemical approach to fabricating nanostructured metallic surfaces can be further utilized in enhanced fluorescence-based applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.