246 resultados para damage depth


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the orientations of both polarizer and analyzer on modulation depth of spatially distributed interferograms for static polarization interference imaging spectrometer (SPIIS) is analyzed. A generally, theoretical relationship to determine the modulation depth of a SPIIS is derived. The special cases of maximum modulation depth (V = 1) and the minimum modulation depth (V = 0) are examined. Our results will provide a theoretical and practical guide for studying, developing and engineering polarization interference imaging spectrometers. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lattice damage accumulation in GaAs and Al0.3Ga0.7As/GaAs superlattices by 1 MeV Si+ irradiation at room temperature and 350-degrees-C has been studied. For irradiations at 350-degrees-C, at lower doses the samples were almost defect-free after irradiation, while a large density of accumulated defects was induced at a higher dose. The critical dose above which the damage accumulation is more efficient is estimated to be 2 x 10(15) Si/cm2 for GaAs, and is 5 x 10(15) Si/cm2 for Al0.8Ga0.7As/GaAs superlattice for implantation with 1.0 MeV Si ions at 350-degrees-C. The damage accumulation rate for 1 MeV Si ion implantation in Al0.3Ga0.7As/GaAs superlattice is less than that in GaAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resistivity defect layer buried beneath the silicon surface layer by using proton implantation and two-step conventional furnace annealing is described. During the first annealing step (600-degrees-C), implanted hydrogen atoms move towards the damage region and then coalesce into hydrogen gas bubbles at the residual defect layer. During the second annealing step (1180-degrees-C) these bubbles do not move due to their large volume. Structural defects are formed around the bubbles at a depth of approximately 0.5-mu-m. The defect layer results in a high resistivity value. Experiments show that the quality of the surface layer has been improved because the surface Hall mobility increased by 20%. The sample was investigated by transmission electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage removal and strain relaxation in the As+-implanted Si0.57Ge0.43 epilayers were studied by double-crystal x-ray diffractometry and transmission electron microscopy. The results presented in this paper indicate that rapid thermal annealing at temperatures higher than 950 degrees C results in complete removal of irradiation damage accompained by the formation of GeAs precipitates which enhance the removal process of dislocations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron-irradiated high-resistivity silicon detectors have been subjected to elevated temperature annealing (ETA). It has been found that both detector full depletion voltage and leakage current exhibit abnormal annealing (or ''reverse annealing'') behaviour for highly irradiated detectors: increase with ETA. Laser induced current measurements indicate a net increase of acceptor type space charges associated with the full depletion voltage increase after ETA. Current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) data show that the dominant effect is the increase of a level at 0.39 eV below the conduction band (E(c) - 0.39 eV) or a level above the valence band (E(v) + 0.39 eV). Candidates tentatively identified for this level are the singly charged double vacancy (V-V-) level at E(c) - 0.39 eV, the carbon interstitial-oxygen interstitial (C-i-O-i) level at E(v) + 0.36 eV, and/or the tri-vacancy-oxygen center (V3O) at E(v) + 0.40 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A passive mode-locked diode-pumped self-frequency-doubling Yb:YAB laser with a low modulation depth semiconductor saturable absorber mirror operating at 374 MHz is demonstrated. The measured pulse duration is 1.98 ps at the wavelength of 1044 nm. The maximum average power reaches 45 mW.