290 resultados para SCATTERING-PARAMETER
Resumo:
The forward scattering light (FSL) received by the detector can cause uncertainties in turbidity measurement of the coagulation rate of colloidal dispersion, and this effect becomes more significant for large particles. In this study, the effect of FSL is investigated on the basis of calculations using the T-matrix method, an exact technique for the computation of nonspherical scattering. The theoretical formulation and relevant numerical implementation for predicting the contribution of FSL in the turbidity measurement is presented. To quantitatively estimate the degree of the influence of FSL, an influence ratio comparing the contribution of FSL to the pure transmitted light in the turbidity measurement is introduced. The influence ratios evaluated under various parametric conditions and the relevant analyses provide a guideline for properly choosing particle size, measuring wavelength to minimize the effect of FSL in turbidity measurement of coagulation rate.
Resumo:
Submerged floating tunnel (SFT) is a popular concept of crossing waterways. The failure of the cable may occur due to vortex-induced-vibration (VIV), and the stability of the cable is crucial to the safety of the entire tunnel. Investigation results in recent years show that the vortex-induced vibration of the flexible cables with large aspect ratio reveals some new phenomena, for example, the vortex-induced wave, multi-mode competition, wide band random vibration, which have brought new challenges to the study of vortex-induced vibration of long flexible cables. In this paper, the dimensionless parameter controlling the wave types of dynamic response of slender cables undergoing vortex-induced vibration is investigated by means of dimensional analysis and finite element numerical simulations. Our results indicate that there are three types of response for a slender cable, i.e. standing wave vibration, traveling wave vibration and intermediate state. Based on dimensional analysis the controlling parameter is found to be related to the system damping including fluid damping and structural damping, order number of the locked-in modes and the aspect ratio of cable. Furthermore through numerical simulations and parameter regression, the expression and the critical value of controlling parameter is presented. At last the physical meaning of the parameter is analyzed and discussed.
Resumo:
Within the transport model IBUU04, we investigate the double neutron/proton ratio of free nucleons taken from two reaction systems using two Sn isotopes at the beam energy of 50MeV/nucleon and with the impact parameters 2 fm, 4 fm and 8 fm, respectively. It is found that the double neutron/proton ratio from peripheral collisions is more sensitive to the density dependence of the symmetry energy than those from mid-central and central collisions.
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p.A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦, 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters.Generally speaking,the present rates are much smaller than the previous ones.
Resumo:
Differential cross sections for the quasi-elastic scattering of C-16 at 47.5 MeV/nucleon from C-12 target are measured. Coupled-channels calculations are carried out and the optical potential parameters are obtained by fitting the experimental angular distribution.
Resumo:
A new measurement of proton resonance scattering on Be-7 was performed tip to the center-of-mass energy of 6.7 MeV using the low-energy RI beam facility CRIB (CNS Radioactive Ion Beam separator) at the Center for Nuclear Study of the University of Tokyo. The excitation function of Be-7 + p elastic scattering above 3.5 MeV was measured Successfully for the first time, providing important information about the resonance structure of the B-8 nucleus. The resonances are related to the reaction rate of Be-7(p.gamma)B-8. which is the key reaction in solar B-8 neutrino production. Evidence for the presence of two negative parity states is presented. One of them is a 2(-) state observed as a broad s-wave resonance, the existence of which had been questionable. Its possible effects on the determination of the astrophysical S-factor of Be-7(p.gamma)B-8 at solar energy are discussed. The other state had not been observed in previous measurements, and its spin and parity were determined as 1(-). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p. A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦ , 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.
Resumo:
Excitation functions have been measured for different projectile-like fragments produced in Al-27(F-19,x)y reactions at incident energies from 110.25 to 118.75 MeV in 250 keV steps. Strong cross section fluctuations of the excitation functions are observed. The cross- correlation coefficients of the excitation functions for different atomic number Z and for different scattering angle theta(cm) have been deduced. These coefficients are much larger than the statistical theoretical calculated ones. This indicates that there are strong correlations between different exit channels in the dissipative heavy ion Collision of Al-27(F-19,x)y.
Resumo:
The influence of in-medium nucleon-nucleon cross section on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-40 and Ca-60 + Ca-40; Sn-112 + Sn-112 and Sn-124 + Sn-124 within the isospin dependent quantum molecular dynamics. The calculated result shows that the influence of the in-medium nucleon-nucleon cross section on the isoscaling parameter a is mainly determined by the corresponding number of collisions, both for isospin dependent and isospin independent parameterizations. The mechanisms behind the effects of the in-medium nucleon-nucleon cross sections on the alpha are investigated in more details.
Resumo:
The differential cross sections for elastic scattering products of F-17 on Pb-208 have been measured. The angular dispersion plots of ln(d sigma/d theta) versus theta(2) are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.