184 resultados para RESERVOIR
Resumo:
The Research of Seismic Recognition Techniques for Gas Reservoir Shang Yong_sheng(Geophysics) Directed by Yang Chang-chun Abstract Gas reservior is one of the most important nature resources. Someone forecast that the output will exceed crude oil in 2015 and become the largest energy source. Recently,more and more gas reservior are discovered as the oil field and gas filed exploration go deep into development. Although the gas proved reserves rise greatly the explorative degree of natural gas resource in our country is still very low. The potential of gas exploration is very great and our task is so hard. How to recognise and discover new gas reservoir is the first task based on the great gas reservior resources foreground. the gas reservior in different oil and gas field have its special gas generation, reservoiring, physical property conditions. However,it may have the same geophysical characters. So,it is very important to analyse, research, summarizing the geophysical characters of the gas reservior and make use of the characters to identify the gas layer effectively. This paper start with modeling,and it discuss the geophysical characters of the gas reservior response. It analyse the seismical wave characters of the gas reservoir. Furthermore, it summarize the method of using the seismica profile to identify the gas reservior directly. The paper discuss the research of extracting diffraction wave for mass diffraction wave grow at the edge of the gas reservoir at the seismic section. Making use of the technique of extracting diffraction wave to identify the gas reservior is the first experiment of the gas reservoir prediction technique. The avo technology is a new geophysical method. From the pre-stack analysis, this paper discuss the technique of using the rich information to identify the gas reservoir. Based on the case study of the Qidam basin and the Hailaer basin it discuss the method of predicating gas reservoir using pre-stack information. It include pre-stack amplitude preserve process, AVO modeling, fluid replacement technique, AVO analysis and interpretation technique. The paper summarize a gas reservoir prediction procedure focusing on the pre-stack information. The seismic wave will cause great attenuation when it pass through the gas layer and the high frequency component loss. This paper discuss the technique of extracting seismic attributes to represent the attenuation degree of seismica wave. Based on the attenuation attributes,it does the research of the gas reservor identification and prediction. At last,the paper discuss the method of calculating the azimuthal anisotropy to predict the fracture reservoir. Keyword: gas reservoir, diffraction wave, AVO, attenuation attribute,fracture prediction
Resumo:
Petroleum and natural gas is an important strategic resources. The short of the reserves will block the development of economy and threaten the safety of nation, along with the main oil fields of our country coming to the height of power and splendor of the exploitation and exploration. Therefore, it makes a great sense to inaugurate new explorative field and increase the reserves of petroleum and natural gas. Magnetic exploration is a main method of geophysics exploration. the developing observation apparatus and the perfect processing method provide wide space for magnetic exploration in these years. The method of magnetic bright spot is an application of magnetic exploration. The vertical migration of the hydrocarbon changes physical and chemical environment above the hydrocarbon reservoir, the new environment make tervalent iron translate into bivalent iron, that produce small scale magnetic anomaly, that is magnetic bright spot. The method of magnetic bright spot explores oil and gas field by the relation between the hydrocarbon and magnetic anomaly. This paper systemically research to pick-up and identify magnetic bright spot combining an oil field item, then point out advantaged area. In order to test the result, the author use the seismic information to superpose the magnetic bright spot, that prove the magnetic bright spot is reliable. then, the author complete a software to pick and identify the magnetic bright spot. The magnetic basement is very important to research forming and evolvement of the basin, especially, it is a crucial parameter of exploring residual basin in the research on pre-Cenozoic residual. This paper put forward a new method to inverse the interface of the magnetic layer on the basis of previous work, that is the method of separation of magnetic field step by step. The theory of this method is to translate the result of magnetic layer fluctuation to the result of magnetization density change, and the magnetic layer is flat, the paper choose thickness of magnetic layer as unit thickness, and define magnetic layer as a unit-thickness layer in order to convenient calculation, at the same time, define the variational magnetization density as equivalent magnetic density. Then we translate the relation between magnetic field and layer fluctuation to the relation between magnetic field and equivalent magnetic density, then, we can obtain the layer fluctuation through calculating equivalent magnetic density. Contrast to conventional parker method, model experimentation and example checkout prove this method is effective. The merit of this method is to avoid flat result in a strongly fluctuant area because of using a uniform average depth, the result of this method is closer to the fact, and this method is to inverse equivalent magnetic density, then translate equivalent magnetic density to layer fluctuation, this lays a foundation to inverse variational magnetic density in the landscape orientation and portrait.
Resumo:
Application of long-term exploration for oil and gas shows that the reservoir technology of prediction is one of the most valuable methods. Quantitative analysis of reservoir complexity is also a key technology of reservoir prediction. The current reservoir technologies of prediction are based on the linear assumption of various physical relationships. Therefore, these technologies cannot handle complex reservoirs with thin sands, high heterogeneities in lithological composition and strong varieties in petrophysical properties. Based on the above-mentioned complex reservoir, this paper conducts a series of researches. Both the comprehending and the quantitative analysis of reservoir heterogeneities have been implemented using statistical and non-linear theories of geophysics. At the beginning, the research of random media theories about reservoir heterogeneities was researched in this thesis. One-dimensional (1-D) and two-dimensional (2-D) random medium models were constructed. The autocorrelation lengths of random medium described the mean scale of heterogeneous anomaly in horizontal and deep directions, respectively. The characteristic of random medium models were analyzed. We also studied the corresponding relationship between the reservoir heterogeneities and autocorrelation lengths. Because heterogeneity of reservoir has fractal nature, we described heterogeneity of reservoir by fractal theory based on analyzing of the one-dimensional (1-D) and two-dimensional (2-D) random medium models. We simulated two-dimensional (2-D) random fluctuation medium in different parameters. From the simulated results, we can know that the main features of the two-dimensional (2-D) random medium mode. With autocorrelation lengths becoming larger, scales of heterogeneous geologic bodies in models became bigger. In addition, with the autocorrelation lengths becoming very larger, the layer characteristic of the models is very obvious. It would be difficult to identify sandstone such as gritstone, clay, dense sandstone and gas sandstone and so on in the reservoir with traditional impedance inversion. According to the obvious difference between different lithologic and petrophysical impedance, we studied multi-scale reservoir heterogeneities and developed new technologies. The distribution features of reservoir lithological and petrophysical heterogeneities along vertical and transverse directions were described quantitatively using multi-scale power spectrum and heterogeneity spectrum methods in this paper. Power spectrum (P spectrum) describes the manner of the vertical distribution of reservoir lithologic and petrophysical parameters and the large-scale and small-scale heterogeneities along vertical direction. Heterogeneity spectrum (H spectrum) describes the structure of the reservoir lithologic and petrophysical parameters mainly, that is to say, proportional composition of each lithological and petrophysical heterogeneities are calculated in this formation. The method is more reasonable to describe the degree of transverse multi-scale heterogeneities in reservoir lithological and petrophysical parameters. Using information of sonic logs in Sulige oil field, two spectral methods have been applied to the oil field, and good analytic results have been obtained. In order to contrast the former researches, the last part is the multi-scale character analysis of reservoir based on the transmission character of wave using the wavelet transform. We discussed the method applied to demarcate sequence stratigraphy and also analyzed the reservoir interlayer heterogeneity.
Resumo:
(1) I research on the relationship between elastic parameters, lithology and liquid. It is a physical base for pre-stack seismic inversion. I research all kinds of approximate expressions of Zoeppritz function. Then the relation of all kinds of approximate expressions can be confirmed. The geological model of water sand and gas sand in different depth was designed. Moreover I research on precision of all kinds of approximate expressions. (2) In process of seismic data which aim at amplitude recovery and apply in pre-stack seismic inversion, I advance to adopt double flow chart for different aim. Pre-stack noise elimination, real amplitude recovery and NMO correction of long offset are the key taches. (3) I made a systemic expatiate for the thinking and applicability about all kinds of expressions of elastic impedance. And mathematical model was applied to compare the precision with all kinds of expressions of elastic impedance. I propose a new pre-stack simultaneous inversion which is based on the Zoppritz function and simulated annealing algorithm. This method can ensure calculation precision of reflection coefficient from different incident angle and get a global optimum solution. Therefore this method improves the precision of pre-stack seismic inversion. (4) The object function of P-S wave pre-stack simultaneous inversion was established. I compared the precision and convergence between simultaneous inversion and P-wave inversion. And the results show that simultaneous inversion is superior to P-wave inversion. Through the study of AVO event of transformed wave, AVO characters of different kinds of gas sand were analyzed. (5) I carried out the study work of pre-stack seismic inversion for carbonate reservoir in middle of Tarim basin and sand shale reservoir in Sulige Area of Erdos Basin. The method and technology in this paper was applied to practical work. And I made a prediction for heterogeneous reservoir. Moreover it acquires a good application effect. Key Word: reflection coefficient, amplitude recovery, pre-stack seismic inversion, Heterogeneous reservoir,prediction.
Resumo:
Based on geophysical and geological data in Jiyang depression, the paper has identified main unconformity surfaces (main movement surfaces) and tectonic sequences and established tectonic and strata framework for correlation between different sags. Based on different sorts of structural styles and characteristics of typical structures, the paper summarized characteristics and distribution of deep structures, discussed evolution sequence of structure, analyzed the relation between tectonic evolution and generation of petroleum. The major developments are as following: Six tectonic sequences could be divided from bottom to top in the deep zone of Jiyang depression. These tectonic sequences are Cambrian to Ordovician, Carboniferous to Permian, lower to middle Jurassic, upper Jurassic to lower Cretaceous, upper Cretaceous and Kongdian formation to the fourth member of Shahejie formation. The center of sedimentation and subsidence of tectonic sequences distinguished from each other in seismic profiles is controlled by tectonic movements. Six tectonic evolution stages could be summarized in the deep zone in Jiyang depression. Among these stages, Paleozoic stage is croton sedimentation basin; Indosinian stage, open folds of EW direction are controlled by compression of nearly SN direction in early Indosinian (early to middle Triassic) while fold thrust fault of EW – NWW direction and arch protruding to NNE direction are controlled by strong compression in late Indosinian (latter Triassic); early Yanshanian stage (early to middle Jurassic), in relatively weak movement after Indosinian compressional orogeny, fluviolacustrine is deposited in intermontane basins in the beginning of early Yanshanian and then extensively denudated in the main orogenic phase; middle Yanshanian (late Jurassic to early Cretaceous), strike-slipping basins are wide distribution with extension (negative reversion) of NW – SE direction; latter Yanshanian (late Cretaceous), fold and thrust of NE – NNE direction and positive reversion structure of late Jurassic to early Cretaceous strike-slipping basin are formed by strong compression of NW–SE direction; sedimentation stage of Kongdian formation to the fourth member of Shahejie formation of Cenozoic, half graben basins are formed by extension of SN direction early while uplift is resulted from compression of nearly EW direction latterly. Compression system, extension system and strike-slip system are formed in deep zone of Jiyang depression. According to identifying flower structure of seismic profiles and analysis of leveling layer slice of 3D seismic data and tectonic map of deep tectonic interface, strike-slip structures of deep zone in Jiyang depression are distinguished. In the middle of the Jiyang depression, strike-slip structures extend as SN direction, NNW direction in Huimin sag, but NNE in Zhandong area. Based on map of relict strata thickness, main faults activity and regional tectonic setting, dynamic mechanisms of deep structure are preliminary determination. The main reason is the difference of direction and character of the plate’s movement. Development and rework of multi-stage tectonic effects are benefit for favorable reservoir and structural trap. Based on tectonic development, accumulation conditions of deep sub-sags and exploration achievements in recent years, potential zones of oil-gas reservoir are put forward, such as Dongying sag and Bonan sag.
Resumo:
The problem of oil and gas migration and accumulation have been investigated for many years in petroleum geology field. However, it is still the most weak link. It is a challenge task to research the question about the dynamics of hydrocarbon migration and accumulation. The research area of this article,Chengbei step-fault zone is the important exploration area of Dagang oil field.The oil distribution is complicated in this area because of abundant faults and rock-reservoir-cap assemblage.In recent years, oil shows is often discovered, but no large-scale pool is found. The most important problem influencing exolore decision is lake of kowning about accumulation process of oil and resources potential. According to the geology characteristic and exolore difficult, the analysis principles of dynamics is used in this paper. The course from source to reservoir is considered as main research line, and relation of valid source rcok, migration dynamic and heterogeneous distribution of carrier is discussed especially in key time. By use of numerial model the couling of migration and passage is realized and dynamic process of oil migration is analysed quantitatively. On the basis of other research about structure and sendiment, basin model is built and parameters are choiced. The author has reconstructed characteristic and distribution of fluid dynamical in main pool-forming time by numerical model. The systems of oil migration and acuumulaiton are divided according to distribution of fluid potential. Furthermore, the scope of valid sourece rock and scale of discharging hydrocarbon is studied in geology history by the method of producting hydrocarbon poential. In carrier research, it is outstanding to analyse the function that fault controls the oil-gas migration and accumulation. According to the mechanism of fault sealing, the paper author puts forward a new quantitative method evaluating fault opening and sealing properties-fault connective probability by using the oil and gas shows in footwall and hangwall reservoir as the index of identifying fault sealing or non-sealing. In this method, many influencing factors are considered synthetically. Then the faut sealing propery of different position in third deimention of faults controlling hydrocarbon acummulation are quantitative evaluated, and it laies a foundation for building compex carrier systems. Ten models of carrier and dynamical are establishe by analysis of matching relation of all kinds of carriers in main pool-forming period. The forming process and distribution of main pathway has been studied quantitatively by Buoyancy-Percolation mode, which can conbine valid source rock, migration dynamical and carrier. On the basis of oil-gas migration and accumulation model, the author computes the loss of hydrocarbon in secondary migration, ahead of cap formation, and the quantity of valueless accumulation according to the stage of migration and accumulation and the losing mechamism. At the same time, resource potential is evaluated in every migration and accumulation system. It shows that the quanlity of middle systems arrive to 5.67×108t, which has a huge explore potential prospect. Finally, according to the result of quantitve analysis above mentioned, the favorable explore aims are forcasted by the way of overlapping migration pathway and valid trap and considering factors of pool-forming. The drilling of actual wells proved that the study result is credible. It would offer strong support to optimize explore project in Chengbei step-fault zone.
Resumo:
The sediment and diagenesis process of reservoir are the key controlling factors for the formation and distribution of hydrocarbon reservoir. For quite a long time, most of the research on sediment-diagenesis facise is mainly focusing on qualitative analysis. With the further development on exploration of oil field, the qualitative analysis alone can’t meet the requirements of complicated requirements of oil and gas exploreation, so the quantitative analysis of sediment-diagenesis facise and related facies modling have become more and more important. On the basis of the research result from stratum and sediment on GuLong Area Putaohua Oil Layer Group, from the basic principles of sedimentology, and with the support from the research result from field core and mining research results, the thesis mainly makes the research on the sediment types, the space framework of sands and the evolution rules of diagenesis while mainly sticking to the research on sediment systement analysis and diagenetic deformation, and make further quantitative classification on sediment-diageneses facies qualitatively, discussed the new way to divide the sediment-diagenesis facies, and offer new basis for reservoir exploration by the research. Through using statistics theory including factor analysis, cluster analysis and discriminant analysis, the thesis devided sediment-diagenesis facies quantitatively. This research method is innovative on studying sediment-diagenesis facies. Firstly, the factor analysis could study the main mechanism of those correlative variables in geologic body, and then could draw a conclusion on the control factors of fluid and capability of reservoir in the layer of studying area. Secondly, with the selected main parameter for the cluster analysis, the classification of diagenesis is mainly based on the data analysis, thus the subjective judgement from the investigator could be eliminated, besides the results could be more quantitative, which is helpful to the correlative statistical analysis, so one could get further study on the quantitative relations of each sediment-diagenesis facies type. Finally, with the reliablities of discriminant analysis cluster results, and the adoption of discriminant probability to formulate the chart, the thesis could reflect chorisogram of sediment-diagenesis facies for planar analysis, which leads to a more dependable analytic results.According to the research, with the multi-statistics analysis methods combinations, we could get quantitative analysis on sediment-diagenesis facies of reservoir, and the final result could be more reliable and also have better operability.
Resumo:
Baijiahai uplift is an important hydrocarbon accumulation belt in eastern Jungger Basin, on which Cainan oilfield and lithologic hydrocarbon reservoir named Cai 43 have been discovered and both of them share the same target formation of Jurassic. However, in the subsequent exploration at this region, several wells that designed for lithologic traps of Jurassic were eventually failed, and that indicates the controlling factors of lithologic reservoir distribution are far more complicated than our previous expectation. This dissertation set the strata of the Jurassic in well Cai 43 region as the target, and based on the integrated analysis of structure evolution、fault sealing ability、simulations of sedimentary microfacies and reservoir beds、distribution analysis of high porosity-high permeability carrier beds、drive forces of hydrocarbons、preferential conduit system and conduit model as well as critical values of the reservoir physical properties for hydrocarbon charging, a special method that different from the conventional way to predict favorable lithologic traps was established. And with this method the controlling factors of the hydrocarbon reservoirs formation are figured out, and further more, the favorable exploration targets are point out. At Baijiahai uplift, fault plays as a crucial factor in the process of the hydrocarbon reservoir formation. In this study, it is found out that the availability of a fault that work as the seal for oil and gas are different. The critical value of the lateral mudstone smear factor (Kssf), which is used to measure the lateral sealing ability of fault, for oil is 3.9 while that for gas is 2.1; and the critical value of vertical sealing factor (F), which similarly a measurement for the vertical sealing ability of fault, for oil is 7.3 while that for gas is 5.1. Dongdaohaizi fault belt that possessed well lateral sealing ability since later Cretaceous have bad vertical sealing ability in later Cretaceous, however, it turns to be well now. Based on the comparison of the physical properties that respectively obtained from electronic log calculating、conventional laboratory rock analysis and the additive-pressure bearing laboratory rock analysis, we established the functions through which the porosity and permeability obtained though conventional method can be converted to the values of the subsurface conditions. With this method, the porosity and permeability of the Jurassic strata at the time of previous Tertiary and that in nowadays are reconstructed respectively, and then the characteristics of the distribution of high porosity-high permeability carrier beds in the evolution processes are determined. With the result of these works, it is found that both well Cai 43 region and Cainan oilfield are located on the preferential conduit direction of hydrocarbon migration. This conclusion is consistent with the result of the fluid potential analysis, in which fluid potential of nowadays and that of later Cretaceous are considered. At the same times, experiment of hydrocarbon injection into the addictive-pressure bearing rock is designed and conducted, from which it is found that, for mid-permeability cores of Jurassic, 0.03MPa is the threshold values for the hydrocarbon charging. And here, the conception of lateral pressure gradient is proposed to describe the lateral driving force for hydrocarbon migration. With this conception, it is found that hydrocarbons largely distributed in the areas where lateral pressure gradient is greater than 0. 03MPa/100m. Analysis of critical physical properties indicated that the value of the critical porosity and critical permeability varied with burial depth, and it is the throat radius of a certain reservoir bed that works as a key factor in controlling hydrocarbon content. Three parameters are proposed to describe the critical physical properties in this dissertation, which composite of effective oil-bearing porosity、effective oil-bearing permeability and preferential flow coefficient. And found that critical physical properties, at least to some extent, control the hydrocarbon distribution of Jurassic in Baijiahai uplift. Synthesize the content discussed above, this dissertation analyzed the key factors i.e., critical physical properties、driving force、conduit system and fluid potential, which controlled the formation of the lithologic reservoir in Baijiahai uplift. In all of which conduit system and fluid potential determined the direction of hydrocarbon migration, and substantially they are critical physical properties of reservoir bed and the lateral pressure gradient that controlled the eventually hydrocarbon distribution. At the same times, sand bodies in the major target formation that are recognized by reservoir bed simulation are appraised, then predict favorite direction of the next step exploration of lithologic reservoir.
Resumo:
Based on the theories of sequence stratigraphy and sedimentology, as well as comprehensive studies of seismic data, drilling data, core interpretation and setting of this area, the thesis presents an analysis for Mesozoic formation in Dinan uplift. By means of recognizing the boundary of the sequence, dividing and correlating the systems tract, Mesozoic of Dinan uplift is divided into ten sequences and twenty-five systems tracts during the establishment of the sequence framework. In the framework, some sequences are featured by mature systems of lowstand, water-transgression and highstand, while some undeveloped systems of lowstand or highstand. The main sedimentary facies in Mesozoic of Dinan uplift are braided river, meandering river, delta and lake. The braided river was divided into sandy river and rudaceous river by the lithology of the river channel and was divided into dry climate and wet climate condition by the color of the flood plain. Additionally, The concept of “wetland” is put forward for the first time and regarded as the consequence of wet climate. The analysis includes the classification of six types of traps: (1) stratigraphic overlap trap, (2) lithologic trap with updip pinchout, (3) stratigraphic unconformity trap, (4) fault-lithology trap, (5) fault trap, (6) anticlinal trap, and combining with the research of the characteristics and distribution rules for the known reservoir, it draws out that “fault control” is the petroleum accumulation pattern in this area, in which fault is the key element of the transporting system. Finally the thesis concludes the distribution characteristics and optimized some targets for the potential exploration zone.
Resumo:
This paper is an important part of the national "863" topic :"Reservoir dynamic model, the development environment and the forecast of remaining oil". In this paper, multi-theory, method and technology are synthesized, and sufficiently use the computer method. We use unifies of qualitative and quota, unifies of macroscopic and microscopic, unifies of dynamic and quiescent description of reservoir, unifies of comprehensive research about reservoir and physical mathematical simulation, unifies of three-dimensional and four-dimensional description of reservoir to research the reservoir of channel sand in Gudao oilfield. and we do some research about the last 10 years of the more than 30 year high pressure water injection and polymer water flooding development, dynamic changes and geologic hazard of reservoir fluid field. It discloses the distribution, genesis and controlling factors. The main innovation achievement and the understanding are: we built-up the framework of the strata and structure, and found genetic type, spatial distribution and aeolotropism of the upper Guantao member. We form the macroscopic and microscopic reservoir model of dynamic evolution, disclose the character, distribution of the macroscopic and microscopic parameter,and the relationship with remaining oil. Next we built-up the model about hydrosialite, and find the styles, group of styles, formation mechanism and controlling factors of the reservoir, disclose the affection of the hydrosialite to remaining oil, pollution of the production environment of oilfield and geologic hazard. The geologic hazards are classified to 8 styles first time, and we disclose the character, distribution law, formation mechanism and controlling factors of the geologic hazard. We built-up the model of the distribution of remaining oil in different periods of Gudao oilfield, and disclose the macroscopic and microscopic formation mechanism of remaining oil in different periods, forecast the distribution of the mobile remaining oil, and find that the main cause of the dynamic evolution of all the sub-models of reservoir fluid field is the geologic process of the reservoir development hydrodynamic force. We develop the reservoir fluid field, research of environment disaster and the description about the support theory, method and technology. The use of this theory in Gudao oilfield has obtained very good economic efficiency, and deepened and develops development geology about the continental facies fault-trough basin, and theory of geologic hazard.
Resumo:
Changling fault depression is a compound fault depression complicated by interior fault, with faults in the west and overlap in the west. North of Changling fault depression show NNE strike while south is NW strike. Changling fault depression has undergone twochasmic stage which control the development and distribution of volcanic rock, one depression stage, later inversion and uplift stage which control the formation of natural gas reservoir, and basin atrophic stage. The main boundary faults and main faults in Changling fault depression control three volcanic cycles and the distribution of volcanic rock. Seismic reflection characteristic and logging response characteristic of volcanic rock in study area are obvious, and the distribution characteristic, volcanic cycle and active stage of volcanic rock can be revealed by seismic attribute, conventional logging data can distinguish clastic rock from volcanic rock or distinguish partial different types of volcanic rock. The reservoir property of rhyolite and volcanic tuff are the best. Favorable volcanic reservoir can be preserved in deep zone. Imaging logging and frequency decompostion technology of seismic data act as effective role in the study of reservoir physical property and gas-bearing properties of volcanic rock.. Hydrocarbon gas in study area is high and over mature coal type gas, the origin of CO2 is complex, it is either inorganic origin or organic origin, or mixing origin. Hydrocarbon gas is mainly originate from Shahezi formation and Yingcheng formation source rocks, CO2 is mainly mantle source gas. Hydrocarbon has the characteristics of continuous accumulation with two charging peak. The first peak represent liquid hydrocarbon accumulation time, The second peak stand for the accumulation time of gaseous hydrocarbon.CO2 accumulate approximately in Neocene. The source rock distribution range, volcanic rock and favorable reservoir facies, distribution characteristic of deep fault (gas source fault) and late inversion structure are the major factors to control gas reservoir formation and distribution. All the results show that these traps that consist of big inherited paleo uplift(paleo slope), stratigraphic overlap and thinning out, volcanic rock, are the most advantageous target zone.
Resumo:
Micro-pore-throat, micro-fracture and low permeability are the most obvious characters of Xifeng ultra-low permeability reservoir, and threshold pressure gradient and medium deformation during the period of oilfield developing results non-linear seepage feature of the formation liquid flowing in the porous medium underground. It is impossible to solve some problems in the ultra-low permeability reservoir development by current Darcy filtration theory and development techniques. In the view of the characters of ultra-low permeability and powerful-diagenesis and fracture up-growth, the paper quantitatively characterizes of through-going scope for reservoir parameters together with some materials such as similarity field outcrop, rock core, drilling, well logging and production dynamic, which provides geological base for further development adjustment. Based on the displacement experiment of different kinds of seepage fluid and oil-water two phases, this paper proves the relationship between threshold pressure gradient and formation permeability in experiment and theory, which is power function and its index is about -1. The variation rule and the mechanism of oil-water two phases threshold pressure gradient are studied. At the same time, based on the experiment of medium deformation, the variation rule of formation physical property parameters and the deformation mechanism are researched, and the influential factors on the medium deformation are analyzed systematically. With elastic unsteady filtration theory, nonlinear mathematical models of the steady and unsteady flow of single phase as well as horizontal well flow and oil-water two phases flow are deduced with the influence of nonlinear factors including threshold pressure gradient and media deformation. The influences of nonlinear factors upon well deliverability and reservoir pressure distribution as well as the saturation variation pattern of oil-water front are analyzed. By means of the researches such as reasonable well pattern, reasonable well array ration, artificial fracture length optimization advisable water flood timing and feasibility of advanced water flooding, it is necessary to find out effective techniques in order to improve development result of this kind of reservoir. This research result develops and improves on low-velocity nonlinear seepage theory, and offers ways to study similar kind of reservoir; it is meaningful to the development of the ultra-low permeability oil and gas reservoir.
Resumo:
The exploration and study in recent years shows that the upper Paleozoic in the east of Ordos Basin possesses major exploration potential, so it is necessary to have a comprehensive and synthetic research in this area. Following the guideline of T.A. Cross’s high resolution sequences stratigraphy and combined with sedimentology, the strata and sequence in the research area are divided and correlated. This paper emphasizes on the reservoir in this area and its major fruits are: Firstly, form the framework of the high sequence stratigraphy through mainly studying on the data of core, well drilling and field section combining. Then, think that the best reservoir formation mainly appears in the middle or lower part of long arising semi-cycle, and focus on A type and C1 middle sequence cycle that contributes to the development of formation. Next, think the sedimentary source mainly comes from the epimetamorphic crystalline basement in the north of the Ordoes Basin through analyzing depositional background, researching on sandstone petrography, distribution characteristics of the sedimentary system as well as researching on heavy mineral combination characteristics. Fourthly, give priority to Zizhou-Qingjian area for the first time and gain seven lithofacies paleography maps in the No.2 member of Shanxi and the No.8 member of Shihezi through using the method of isochronal lithofacies paleogeography mapping, then bring forth that Sh2 is mainly developed a type I sequence under the margin of ramp lake-basin background. Fifthly, through researching on the characteristics of reservoir petrography and diagenesis, think that all researched areas experienced compaction and cementation, and there is different types of rocks, only little of the primary pores that are made up of litharenite and lithoclastic quartz sandstone is left, while in lithoclastic quartz sandstone, there are still many primary pores Sixthly, through studying on pore types, microstructure, as well as physical property on the key formation, think that the researched area mostly appears typical low pore, low porosity and permeability, which mainly result from sedimentary and diagenesis. Lastly, through researching on classified evaluation in the key formation, productivity analysis, and combing with reservoir distribution, the researched area is divided into three parts, and think that exploration should be emphasized on formation I and II. The characteristics of sandstones distribution in Sh23 member, gas formation distribution and open flow capacity of exploitation well are all consistent properly with the results of reservoir comprehensive evaluation in this thesis proved by the gas production development in 2006.
Resumo:
The exploration in recent years shows that the Yanchang Formation in the southwest of Ordos Basin is of great resource potential and good exploration and exploitation prospect. In the thesis ,sedimentary source analysis,sedimentary system,sedimentary microfacies,sandstones distribution and reservoir characteristic are studied and favorable oil area are forecasted in Chang6-Chang8 of Yanchang formation in HuanXian region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on. The stratum of Chang6-Chang8 of Yanchang formation could be divided into pieces of member following the principles that firstly contrasting the big segments, then contrasting the small segments, being controlled by cycle and consulting the thickness etc.And the characteristic of stratum are detailed discussed , respectively. Based on the source direction of the central basin, heavy and light minerals are used to analyse source direction of Chang6 and Chang8 member, in HuanXian area. Research result shows that the source of Chang6 and Chang8 member is mixed provenance,including west-south,west and east-north. By the study of rock types、 sedimentary conformation、lithology and electromotive curve combination and palaeo-biology,lake、delta and braided delta mianly developed in study area are recognized, Subaqueous distributary channels in delta front and in braided delta front, and sand body in deep-lake turbidite, are the main reservoir.forthermore,the characteristic of depositional system and sandy body in space are discussed. Applied with routine microscope slice identification, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, Feldspar-lithic fine-sandstone and feldspar fine-sandstone are mainly sandstone of Y Chang6-Chang8 in Huanxian area, small pore and tiny pore are the main pore types, tiny throat type and micro-fine throat type are widely developed , secondary dissolution porosity, intercrystal porosity, tiny pore and micro-crack are main pore types.Intergranular porosity and dissolution porosity secondary is the main pore secondary. The dominant diagenesis types in the area are compaction, cementation, replacement and dissolution. Chlorite films cementation facies, carbonate cementation facies ,mud cementation compaction facie, compaction 、pressure solution facies are the main diagenetic facies,in which Chlorite films cementation facies is the best diagenetic facies in study area. Reservoir influence factor analysis ,rock types are the main factor forming this low-pore and low-permeability of Chang6-Chang8 member in study area,and relatively higher permeability area are cortrolled by sedimentary facies distribution, diagenesis improved reservoir physical property. According to the distributing of sedimentary micro-facies and sandy body , and the test oil, favorable region in Chang6-Chang8 are forecasted.
Resumo:
This thesis is based on the research project of Study on the Geological Characteristics and Remaining Oil Distribution Law of Neogene Reservoirs in Liunan Area, which is one of the key research projects set by PetroChina Jidong Oilfield Company in 2006. The determination of remaining oil distribution and its saturation changes are the most important research contents for the development and production modification of oilfields in high water-cut phases. Liunan oilfield, located in Tangshan of Hebei Province geographically and in Gaoliu structural belt of Nanpu sag in Bohai Bay Basin structurally, is one of the earliest fields put into production of Jidong oilfield. Focusing on the development problems encountered during the production of the field, this thesis establishes the fine geological reservoir model through the study of reservoir properties such as fine beds correlation, sedimentary facies, micro structures, micro reservoir architecture, flow units and fluid properties. Using routine method of reservoir engineering and technology of reservoir numerical modeling, remaining oil distribution in the target beds of Liunan area is predicted successfully, while the controling factors of remaining oil distribution are illustrated, and the model of remaining oil distribution for fault-block structure reservoirs is established. Using staged-subdivision reservoir correlation and FZI study, the Strata in Liunan Area is subdivided step by step; oil sand body data-list is recompiled; diagram databases are established; plane and section configuration of monolayer sandstone body, and combination pattern of sandstone bodys are summarized. The study of multi-level staged subdivision for sedimentary micro-facies shows that the Lower member of Minghuazhen formation and the whole Guantao formation in Liunan Area belong to meandering river and braided river sedimentary facies respectively, including 8 micro facies such as after point bar, channel bar, channel, natural levee, crevasse splay, abandoned channel, flood plain and flood basin. Fine 3D geological modeling is performed through the application of advanced software and integration of geological, seismic logging and reservoir engineering data. High resolution numerical simulation is performed with a reserve fitting error less than 3%, an average pressure fitting fluctuation range lower than 2Mpa and an accumulate water cut fitting error less than 5%. In this way, the distribution law of the target reservoir in the study area is basically recognized. Eight major remaining oil distribution models are established after analysis of production status and production features in different blocks and different layers. In addition, fuzzy mathematics method is used to the integreted evaluation and prediction of abundant remaining oil accumulation area in major production beds and key sedimentary time units of the shallow strata in Liunan Area and corresponding modification comments are put forward. In summary, the establishment of fine reservoir geological model, reservoir numerical simulation and distribution prediction of remaining oil make a sound foundation for further stimulation of oilfield development performance.