174 resultados para Quantum effects
Resumo:
We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio
Resumo:
Shot noise through a closed Aharonov-Bohm interferometer carrying a quantum dot in one of its two current paths is investigated. It is found that the shot noise can be modulated by the magnetic flux Phi, the dot level, and the direct tunneling. Due to the interference between the two transmission channels, the Kondo correlation manifests itself in the flux dependence of the shot noise, which exhibits oscillation behavior with a period of Phi(0)/2 (Phi(0) is the flux quantum) for small voltages below the Kondo temperature T-K. At voltages well above T-K or outside the Kondo regime, the shot noise is determined by high-energy Coulomb and hybridization processes, and its Aharonov-Bohm oscillations restore the fundamental period of Phi(0). As a result of its two-particle nature, the shot noise contains higher-order harmonics absent in the current, demonstrating the fact that the noise is more sensitive to the effects of quantum interference than the current.
Resumo:
We study the average property of the isospin effects of reaction mechanism induced by neutron-halo nuclei within the isospin-dependent quantum molecular dynamics model. We find that the extended neutron density distribution for the neutron-halo projectile brings an important isospin effect into the reaction mechanism, which induces the decrease of nuclear stopping R; however, it induces the obvious increases of the neutron-proton ratio of nucleon emissions (n/p)(nucl) for all of the beam energies in this work, compared to the same mass stable colliding system.
Resumo:
We study the effect of phase relaxation on coherent superpositions of rotating clockwise and anticlockwise wave packets in the regime of strongly overlapping resonances of the intermediate complex. Such highly excited deformed complexes may be created in binary collisions of heavy ions, molecules, and atomic clusters. It is shown that phase relaxation leads to a reduction of the interference fringes, thus mimicking the effect of decoherence. This reduction is crucial for the determination of the phase-relaxation width from the data on the excitation function oscillations in heavy-ion collisions and bimolecular chemical reactions. The difference between the effects of phase relaxation and decoherence is discussed.
Resumo:
An isospin degree of freedom is inserted into the momentum dependent interaction in the quantum molecular dynamics model to obtain an isospin dependent momentum interaction given in a form practically usable in isospin dependent quantum molecular dynamics model. We investigate the entrance channel effects for the role of isospin momentum dependent interaction on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the isospin dependent momentum interaction induces a significant reduction of isospin fractionation ratio under all entrance channel conditions. However the strong dependence of isospin fractionation ratio on the symmetry potential is preserved after considering the isospin degree of freedom in the momentum dependent interaction.
Resumo:
The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.
Resumo:
Well-ordered single, double/four parallel, three/four-strands helical chains, and five-strand helical chain with a single atom chain at the center of Si nanowires (NWs) inside single-walled carbon nanotubes (Si-n@SWCNTs) are obtained by means of molecular dynamics. On the basis of these optimized structures, the structural evolution of Si-n@SWCNTs subjected to axial stress at low temperature is also investigated. Interestingly, the double parallel chains depart at the center and transform into two perpendicular parts, the helical shell transformed into chain, and the strand number of Si NWs increases during the stress load. Through analyzis of pair correlation function (PCF), the density of states (DOS), and the z-axis polarized absorption spectra of Si-n@SWCNTs, we find that the behavior of Si-n@SWCNTs under stress strongly depends on SWCNTs' symmetry, diameter, as well as the shape of Nws, which provide valuable information for potential application in high pressure cases such as seabed cable.
Resumo:
Photoluminescence (PL) quantum efficiency is a key issue in designing successful light-emitting polymer systems. Exciton relaxation is strongly affected by exciton quenching at nonradiative trapping centers and the formation of excimers. These factors reduce the PL quantum yield of light-emitting polymers. In this work, we have systematically investigated the effects of exciton confinement on the PL quantum yield of an oligomer, polymer, and alternating block copolymer (ABC) PPV system. Time-resolved and temperature-dependent luminescence studies have been performed. The ABC design effectively confine photoexcitations within the chromophores, preventing exciton migration and excimer formation. An unusually high (PL) quantum yield (above 90%) in the solid state is reported for the alternating block copolymer PPV, as compared to that of similar to 30% of the polymer and oligomer model compounds. (C) 2000 Elsevier Science S.A. All rights reserved.