229 resultados para Pyrethrum (Plant)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文以青藏高原东部的高山草甸为研究对象,设置早融、中间及晚融三个融雪部位,采用实验室测量、野外测量、野外样方调查相结合的 方法,从个体、种群和群落的水平上比较研究了高山雪场植物在同一雪场样地中不同融雪梯度上的特征变异及适应,结果表明: 从早融到晚融的梯度上,随着融雪时间的逐渐推迟,表土日温差降低,冻融交替的强度减弱,土壤水份逐渐增加,总N、总P、总K 以及 可溶性的N、P 和pH 变化不明显,土壤有机质及可溶性的K 和Ca 逐渐降低。冻融交替强度上的差异以及土壤水分差异被认为是融雪梯度上 影响植物生长的主要原因。 从早融到晚融的梯度上,伴随着生态因子的改变,几种常见植物的个体特征也发生相应的变化。首先,物候期推迟。植物开始生长的时间 一般要推迟将近二十天,但同一种植物在不同的融雪部位上的衰老期趋于一致,这预示着在晚融部位同一植物的生长期要缩短。其次,个体生 长特性发生改变。黑褐穗苔草(Carex atrofusca subsp. minor (Boott) T.Koyama)和西北黄芪(Astragalus fenzelianus Pet.-Stib.)的个体生长(株高、单株叶数、单叶面积和地上生物量)表现为逐渐增加的趋势;斑唇马先蒿(Pedicularis longiflora Rudolph var. tubiformis (Klotz.) Tsoong)和川西小黄菊(Pyrethrum tatsienense (Bur. et Franch.) Ling ex Shih.)则表现为逐渐降低的趋势;长叶火绒草(Leontopodium longifolium Ling)在融雪梯度上的变化趋势不明显。再次,从繁殖特性来看,大卫马先蒿(Pedicularis davidii var. pentodon Tsoong)的单株花数、单花种子数、种子千粒重及种子萌发率随融雪的推迟呈现为逐渐增加的趋势;圆穗蓼(Polygonum macrophyllum D.Don)的种子(小坚果)千粒重和萌发率也表现为逐渐增加,其余繁殖特征变化不明显。 在种群层次上,几个常见物种的分布格局随着融雪的推迟都发生一定的变化,基本上表现为从早融的集群分布到中间或晚融部位的随机分布。物种间的联结性也发生较大的变化,由早融部位的总体上的正关联逐步过度到晚融部位上的总体上的负关联。特定种对间的联结性也发生较大的变化。恶劣环境条件(如剧烈的冻融交替)的影响以及对恶劣条件适应被认为是分布格局及种间联结性发生变化的主要原因。 在群落层次上,物种多样性的变化表现为单峰曲线的格局,即在中间部位多样性最高。早融部位强烈的冻融交替和晚融部位缩短的生长季是早融及晚融部位物种多样性不高的重要原因。几乎所有的只出现在一个融雪部位(雪深级别)上的物种都发生在中间融雪部位。这说明,中等的雪深更有利于许多高山植物的存活,而过浅过深的积雪都不利于植物的生存。另外,相距较近的融雪梯度之间的物种相似性较大,而相距较远的梯度之间物种的替代率较高,物种的相似性较小。在群落的生物量方面,地上生物量随融雪的推迟而升高,地下生物量随融雪的推迟而下降,地上与地下生物量之总和随着融雪的推迟而下降,地下生物量与地上生物量之比随着融雪的推迟而下降。早融部位的地上生物量主要集中于地上0-10cm 的范围内,表明在早融部位植物地上部分有变矮的趋势;早融部位的地下生物量在土壤各深度分布相对较均一,而晚融部位地下生物量则主要集中于地下0-10cm 的范围内。生物量的变化趋势主要与雪场中各部位的土壤水分含量及地表日温度差异有关,是植物适应特定环境的结果。 To detect the plants’ responses to snow-cover gradients in an alpine meadow of eastern Tibetan plateau, laboratory method and field sample plot method were employed, and three gradeients (early-, medium and late-melting)were established in a natural snowbed. The measurements were carried out for two years and was done on three levels——individual, population and community. The results are shown as follows : From early- to late-melting gradients, daily ground temperature difference between day and night decreased, amplitude of freeze-thaw alternation weakened, soil organic matter contents and soluble K and Ca decreased, while soil water content increased. Total N, total P, total K,pH soluble N and soluble P kept constant from early- to late-melting portions. Among these factors, the changes of intense freeze-thaw alternation and soil water contents were considered as main factors affecting plants’ growth. From early- to late-melting portions, all phenological phases postponed, e.g. phase of plant emergence postponed almost twenty days. However, the same species’ individuals at different portions withered in step, which implied that the individuals at late-melting portion possessed shorter growing season length. Along the same gradient, both Carex atrofusca subsp. minor (Boott) T. Koyama and Astragalus fenzelianus Pet.-Stib. increased their individual growth, whereas Pedicularis longiflora Rudolph var. tubiformis (Klotz.) Tsoong and Pyrethrum tatsienense (Bur. et Franch.) Ling ex Shih. decreased their individual growth. Unlike the four plants mentioned above, Leontopodium longifolium L. did not show any evident change. As to reproductive charateristics, the flowers per individual, the number of seeds per flower, the thousand seed weight and the seed germination rate of Pedicularis davidii var. pentodon showed an increasing trend; and Polygonum macrophyllum D.Don also increased its thousand seed weight and seed germination rate along the same gradient. However, the other reproductive charateristics of Polygonum macrophyllum D.Don did not change significantly. At population level, the distribution pattern of several selected species changed from cluster pattern to random pattern as the snowmelt postponed. Overall association among the species changed from positive to negative along the same gradient. Further, interspecific association also changed evidently. Adverse circumstances such as intense freeze-thaw alternation were considered as primary factors resulting in changes of population distribution pattern and interspecific association. At the level of community, species diversity showed a pattern of a unimodal trend, i.e. the highest diversity occurred at medium snow depth,perhaps because of intense freeze-thaw alternation at early-melting portions and the shortest growing season at late-melting portions. Almost all species that only appeared at one snowmelt portion occurred at medium portion, indicating that medium snow depth was more suitable for many species’ survival. Species replacement from one snowmelt portion to its neighboring portion seldom took place. However, while distance between two portions became farther, species replacement between the two portions occurred more frequently. As for biomass, aboveground biomass increased from early- to late-melting portions, whereas belowground biomass, total biomass and the ratio of belowground to aboveground all decreased along the same snow gradient. A majority of aboveground biomass distributed in a height range of 0-10 cm, suggesting that height of plants inhabiting early-melting portion be shorter compared with other portions. In addition, belowground biomass at early-melting portion was evenly distributed at different soil depth in comparison with aboveground biomass, whereas belowground biomass at late-melting portion concentrated 0-10cm soil layer below ground. The changing trend of biomass was also related to two factors. One was soil water content, and the other topsoil temperature difference between day and night.