220 resultados para Pulse compressors
Resumo:
Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-fs Ti:sapphire laser at 800 nm, was presented. The 0.85 nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 muJ at pump intensity 3 GW/cm(2), the corresponding parametric gain reached 3.6 x 10(3), the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.
Resumo:
This report presents the experiments to study the characteristics of the picosecond ultra-wideband pulses coherent radiation. The testing involves bow-tie horn antennas for both the transninting and receiving antenna. Sixteen channels of electrical pulses with 290 ps duration and jitter < 30 ps have been used. The antenna arrays with various frames of 4 x 1, 4 x 2, 4 x 3, 4 x 4 are employed to radiate the pulses. The receiving antenna measures the electrical field in different distance front the transmitting antennas arrant The results show that if the pulses are in coherent condition, the peak power pulse of output by antennas array with N elements are N-2 of that of the single element antenna. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The analysis and calculation of the compensation for the phase mismatch of the frequency-doubling using the frequency space chirp introduced from prisms are made. The result shows that suitable lens can compensate the phase mismatch in a certain extent resulting from wide femtosecond spectrum when the spectrum is space chirped. By means of this method, the experiment of second harmonic generation is carried out using a home-made femtosecond KLM Ti:sapphire laser and BBO crystal. The conversion efficiency of SHG is 63 %. The average output power of blue light is 320 mW. The central wavelength is 420 nm. The spectrum bandwidth is 5.5 nm. It can sustain the pulse width of 33.6 fs. The tuning range of blue light is 404-420 nm,when the femtosecond Ti:sapphire optical pulse is tuned using the prisms in the cavity.
Resumo:
We propose a LBO-based ultra-broadband chirped pulse optical parametric amplifier employing pulse-front-matching to yield transform-limited sub-12-fs pulses. Measurement of the maximum possible gain bandwidth for the LBO-based OPCPA demonstrates more than 60nm gain bandwidth FWHM. For the generation of TL pulses by the use of this OPCPA, a suitable combination of OPCPA and PFM is first presented. The PFM pump geometry realizes tilt-free signal amplification, and permits this OPCPA to generate TL sub-12-fs pulses.
Resumo:
Bacteriorhodopsin (BR) films oriented by an electrophoretic method are deposited on a transparent conductive ITO glass. A counterelectrode of copper and gelose gel is used to compose a sandwich-type photodetector with the structure of ITO/BR film/gelose gel/Cu. A single 30-ps laser pulse and a mode-locked pulse train are respectively used to excite the BR photodetector. The ultrafast failing edge and the bipolar response signal are measured by the digital oscilloscope under seven different time ranges. Marquardt nonlinear least squares fitting is used to fit all the experimental data and a good fitting equation is found to describe the kinetic process of the photoelectric signal. Data fitting resolves six exponential components that can be assigned to a seven-step BR photocycle model: BR-->K-->KL-->L-->M-->N-->O-->BR. Comparing tests of the BR photodetector with a 100-ps Si PIN photodiode demonstrates that this type of BIR photocletector has at least 100-ps response time and can also serve as a fast photoelectric switch. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We report the observation of intense spontaneous emission of green light from LiF:F-2:F-3(+) centers in active channel waveguides generated in lithium fluoride crystals by near-infrared femtosecond laser radiation. While irradiating the crystal at room temperature with 405 nm light from a laser diode, yellow and green emission was seen by the naked eye. Stripe waveguides were fabricated by translating the crystal along the irradiated laser pulse, and their guiding properties and fluorescence spectra at 540 nm demonstrated. This single-step process inducing a waveguide structure offers a good prospect for the development of a waveguide laser in bulk LiF crystals.
Resumo:
We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space-time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field. (C) 2009 Optical Society of America
Resumo:
We present a broadly tunable active mode- locked. bre ring laser based on a semiconductor optical ampli. er ( SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12 ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength- tunable optical bandpass. lter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental con. guration of the pulse laser is very simple and easy to setup with no polarization- sensitive components.
Resumo:
An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from I to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Compact and efficient triple-pass optical parametric chirped pulse amplification in a single crystal has been demonstrated. The signal was triple-pass amplified in a single nonlinear crystal by a nanosecond pump pulse. The first-pass optical parametric amplification is completely phase matched in the plane of the maximum effective nonlinearity, and the other two passes work symmetrically near to the first-pass optical parametric amplification plane. This architecture efficiently increases the overall gain, overcomes the optical parametric fluorescence, and clearly simplifies the amplification scheme.