286 resultados para Pulse compression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Far-field spot compression without energy loss in main lob is of great significance to wireless laser communication. In this letter, we propose two schemes to obtain far-field spot compression without energy loss in main lob. One scheme is based on the simulated annealing (SA) algorithm. Using SA algorithm, we design the phase profile of the diffractive phase element (DPE). Using the designed DPE, far-field spot compression without energy loss in main lob is achieved. The other scheme is based on YG algorithm. By means of YG algorithm, we appropriately designed the DPE in the emitting plane. Using the DPE, far-field spot compression without energy loss in main lob is obtained. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doubled femtosecond laser pulses in-line are needed in the collinear pump-probe technique, collinear second harmonic generation frequency-resolved optical gating (SHG FROG) and the spectral phase interferometry for direct electric-field reconstruction (SPIDER), etc. Normally, it is generated by using a Michelson's structure. In this paper, we proposed a novel structure with two-layered reflective Dammann gratings and the reflective mirrors to generate doubled femtosecond laser pulses in line without transmission optical elements. Angular dispersion and spectral spatial walk-off are both compensated. In addition, this structure can also compress the positive chirped pulse, which cannot be realized with a Michelson's structure. By adopting triangular grating and blazed gratings, the efficiency of the system would in principle be increased as the Michelson's scheme. Experiments demonstrated that this method should be an alternative approach for generation of the double compressed pulses of femtosecond laser for practical applications. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a miniature pulse compressor that can be used to compensate the group velocity dispersion that is produced by a commercial femtosecond laser cavity. The compressor is composed of two identical highly efficient deep-etched transmissive gratings. Compared with prism pairs, highly efficient deep-etched transmissive grating pairs are lightweight and small. With an optimized groove depth and a duty cycle, 98% diffraction efficiency of the -1 transmissive order can be achieved at a wavelength of 800 nm under Littrow conditions. The deep-etched gratings are fabricated in fused silica by inductively coupled plasma etching. With a pair of the fabricated gratings, the input positively chirped 73.9 fs pulses are neatly compressed into the nearly Fourier transform-limited 43.2 fs pulses. The miniature deep-etched grating-based pulse compressor should be of interest for practical applications. (c) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multilayer coupled wave theory is extended to systematically investigate the diffraction properties of multilayer volume holographic gratings (MVHGs) under ultrashort laser pulse readout. Solutions for the diffracted and transmitted intensities, diffraction efficiency, and the grating bandwidth are obtained in transmission MVHGs. It is shown that the diffraction characteristics depend not only on the input pulse duration but also on the number and thickness of grating layers and the gaps between holographic layers. This analysis can be implemented as a useful tool to aid with the design of multilayer volume grating-based devices employed in optical communications, pulse shaping, and processing. (C) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate theoretically and experimentally compensation for positive Kerr phase shifts with negative phases generated by cascade quadratic processes. Experiments show correction of small-scale self-focusing and whole-beam self-focusing in the spatial domain and self-phase modulation in the temporal domain. (C) 2001 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the Huygens-Fresnel diffraction integral and Fourier transform, propagation expression of a chirped Gaussian pulse passing through a hard-edged aperture is derived. Intensity distributions of the pulse with different frequency chirp in the near-field and far-field are analyzed in detail by numerical calculations. In the near-field, amplitudes of the intensity peaks generated by the modulation of the hard-edged aperture decrease with increasing the frequency chirp, which results in the improving of the beam uniformity. A physical explanation for the smoothing effect brought by increasing the frequency chirp is given. The smoothing effect is achieved not only in the pulse with Gaussian transverse profile but also in the pulse with Hermite-Gaussian transverse profile when the frequency chirp increases. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the Huygens-Fresnel diffraction integral and the Fourier transform, the propagation expression of a chirped pulse passing through a hard-edged aperture is derived. Using the obtained expression, the intensity distributions of the pulse with different chirp in the near and far fields are analyzed in detail. Due to the modulation of the aperture, many intensity peaks emerge in the intensity distributions of the chirped pulse in the near field. However, the amplitudes of the intensity peaks decrease on increasing the chirp, which results in the smoothing effect in the intensity distributions. The beam smoothing brought by increasing the chirp is explained physically. Also, it is found that the radius of the intensity distribution of the chirped pulse decreases when the chirp increases in the far field. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time to our knowledge, in a high-energy laser facility with an output energy of 454.37 J, by using a temporal-space-transforming pulse-shaping system with our own design of a knife-edge apparatus, we obtained a quasi-square laser pulse. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a four-pass laser pulse compressor design based on two grating apertures with two gratings per aperture that is tolerant to some alignment errors and, importantly, to grating-to-grating period variations. Each half-beam samples each grating in a diamond-shaped compressor that is symmetric about a central bisecting plane. For any given grating, the two half-beams impinge on opposite sides of its surface normal. It is shown that the two split beams have no pointing difference from paired gratings with different periods. Furthermore, no phase shift between half-beams is incurred as long as the planes containing a grating line and the surface normal for each grating of the pair are parallel. For grating pairs satisfying this condition, gratings surfaces need not be on the same plane, as changes in the gap between the two can compensate to bring the beams back in phase. © 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose to utilize the leading pulse of a petawatt class laser to create a conic plasma channel in the dense plasmas. This plasma channel could serve as a natural cone to guide the main pulse to the cone tip, as behaves similarly to the physical Au cone. We estimate that the leading pulse of a petawatt laser could create a natural cone with cone tip only about 100 mu m away from the edge of compressed core plasma. The natural cone formation should be compatible for a good uniform compression and efficient fast heating of the imploded fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In optical parametric chirped pulse amplification (OPCPA), the degradation of temporal contrast of the compressed signal pulse mainly results from spectral clipping in the grating stretcher with finite size of the optics, parametric fluorescence (PF) and the spectral variations transferred from temporal fluctuation of the pump pulse. The temporal contrast of the recompressed amplified pulse in the OPCPA system is studied numerically and a number of solutions are considered and optimized to achieve the highest temporal contrast.