579 resultados para Poly(A) tail


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wettability of thin poly(methyl methacrylate) (PMMA) films on a silicon wafer with a native oxide layer exposed to solvent vapors is dependent on the solvent properties. In the nonsolvent vapor, the film spread on the substrate with some protrusions generated on the film surface. In the good solvent vapor, dewetting happened. A new interface formed between the anchored PMMA chains and the swollen upper part of the film. Entropy effects caused the upper movable chains to dewet on the anchored chains. The rim instability depended on the surface tension of solvent (i.e., the finger was generated in acetone vapor (gamma(acetone) = 24 mN/m), not in dioxane vapor (gamma(dioxane) = 33 mN/m)). The spacing (lambda) that grew as an exponential function of film thickness h scaled as similar to h(1.31) whereas the mean size (D) of the resulting droplets grew linearly with h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Blocked isocyanate-functionalized polyolefins have great potential for use in semicrystalline polymer blends to obtain toughened polymers. In this study, poly(butylene terephthalate) (PBT) was blended with allyl N-[2-methyl-4-(2-oxohexahydroazepine-1 -carboxamido)phenyl] carbamate-functionalized poly(ethylene octene) (POE-g-AMPC).RESULTS: New peaks at 2272 and 1720 cm(-1), corresponding to the stretching vibrations of NCO and the carbonyl of NH-CO-N, respectively, in AMPC, appeared in the infrared spectrum of POE-g-AMPC. Both rheological and X-ray photoelectron spectroscopy results indicated a new copolymer was formed in the reactive blends. Compared to uncompatibilized PBT/POE blends, smaller dispersed particle sizes with narrower distribution were found in the compatibilized PBT/POE-g-AMPC blends. There was a marked increase in impact strength by about 10-fold over that of PBT/POE blends with the same rubber content and almost 30-fold higher than that of pure PBT when the POE-g-AMPC content was 25 wt%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thin films of a symmetric crystalline-coil diblock copolymer of poly(L-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (T-g(PLLA)), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (T-c), the glass transition temperature of PS (T-g(PS)), the peak melting point of PLLA crystals (T-m(PLLA)), and the end melting point of PLLA crystals (T-m,end(PLLA)). When annealed at (T-c =) 80 degrees C (T-c < T-g(PS) < T-ODT, order-disorder transition temperature), 123 degrees C (T-g(PS) < T-c < T-m(PLLA) < T-ODT). 165 degrees C (T-g(PS) < T-m(PLLA) < T-c < T-m,end(PLLA) < T-ODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene oxide)-b-poly(2-hydroxyethyl methacrylate) (PEO-b-PHEMA) was synthesized by successive atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate(HEMA) monomer using PEO-Br macroinitiator as initiator, CuBr/CuBr2 and 2,2.-bipyridyl (bpy) as catalyst and ligand. IR, H-1 NMR, and GPC analysis indicate that PEO-b-PHEMA block copolymer with low polydispersity index (M-w/M-n approximate to 1.1) has been formed. Self-assembly of this double hydrophilic block copolymer in the selective solvent and water was also studied. Owing to the high hydrophilic nature of the PEO and PHEMA blocks, this double hydrophilic block copolymer cannot disperse well in water. So block copolymer was modified by part esterification of PEO-b-PHEMA with acetic anhydride, which increased the hydrophobic group of the PHEMA block. The TEM results show that this block copolymer spontaneously form well-defined micelles in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the functional nucleic acids studied, adenine-rich nucleic acids have attracted attention due to their critical roles in many biological processes and self-assembly-based nanomaterials, especially deoxyribonucleic acids (abbreviated as poly(dA)). Therefore the ligands binding to poly(dA) might serve as potential therapeutic agents. Coralyne, a kind of planar alkaloid, has been firstly found that it could bind strongly to poly(dA). This work herein reports an approach for visual sensing of the coralyne-poly(dA) interaction. This method was based on the coralyne inducing poly(dA) into the homo-adenine DNA duplex and the difference in electrostatic affinity between single-stranded DNA and double-stranded DNA with gold nanoparticles (GNPs). Furthermore, we applied the recognition process of the interaction between coralyne and poly(dA) into specific coralyne detection with the assistance of certain software (such as Photoshop). A linear response from 0 to 728 nM was obtained for coralyne, and a detection limit of 91 nM was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper described a double-chained cationic surfactant, didodecyldimethylammonium bromide (DDAB). for dynamic surface modification of poly(dimethylsiloxane) (PDMS) microchips to reduce the fluorescent dyes adsorption onto the microchannel. When DDAB with a high concentration was present as the dynamic modification reagent in the running and sample buffer, it not only reversed the direction of electroosmotic flow, but also efficiently suppressed fluorescent dyes pyronine Y (PY) or rhodamine 8 (RB) adsorption onto the chip surface. In addition, vesicles formed by DDAB in the buffer with higher surface charge density and electrophoretic mobility could provide wider migration window and potential for the separation of compounds with similar hydrophobicity. Factors affecting modification, such as pH and concentrations of the buffer, DDAB concentration in the buffer were investigated. Compared with commonly used single-chained cetyltrimethylammonium bromide, DDAB provided a better modification performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)(3)(2+) immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biodegradable amphiphilic block copolymer, PEG-b-P(LA-co-MAC), was used to prepare spherical micelles consisting of a hydrophobic P(LA-co-MAC) core and a hydrophilic PEG shell. To improve their stability, the micelles were crosslinked by radical polymerization of the double bonds in the hydrophobic blocks. The crosslinked micelles had similar sizes and a narrow size distribution compared to their uncrosslinked precursor. The improved stability of the crosslinked micelles was confirmed by measurements of the CMC and a thermodynamic investigation. These micelles can internalize into Hela cells in vitro as demonstrated by inverted fluorescence microscopy and CLSM. These stabilized nanoscale micelles have potential use in biomedical applications such as drug delivery and disease diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A functionalized. cyclic carbonate monomer containing a cinnamate moiety, 5-methyl-5-cinnamoyloxymethyl-1,3-dioxan-2-one (MC), was prepared for the first time with 1,1,1-tri(hydroxymethyl) ethane as a starting material. Subsequent polymerization of the new cyclic carbonate and its copolymerization with L-lactide (LA) were successfully performed with diethyl zinc (ZnEt2) as initiator/catalyst. NMR was used for microstructure identification of the obtained monomer and copolymers. Differential scanning calorimetry (DSC) was used to characterize the functionalized poly(ester-carbonate). The results indicated that the copolymers displayed a single glass transition temperature (T-g) and the T, decreased with increasing carbonate content and followed the Fox equation, indicative of a random microstructure of the copolymer. The photo-crosslinking of the cinnamate-carrying copolymer was also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isothermal crystallization behavior of poly(L-lactic acid)/organo-montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice-functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (t(i)) and half times for overall PLLA crystallization (100 degrees C <= T-c <= 120 degrees C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X-ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new biocompatible film based on chitosan and poly(L-glutamic acid) (CS/PGA), created by alternate deposition of CS and PGA, was investigated. FT-IR spectroscopy, UV-vis spectroscopy and QCM were used to analyze the build-up process. The growth of CS and PGA deposition are both exponential to the deposition steps at first. After about 9 (CS/PGA) depositions, the exponential to linear transition takes place. QCM measurements combined with UV-vis spectra revealed the increase in the multilayer film growth at different pH (4.4, 5.0 and 5.5). The build-up of the multilayer stops after a few depositions at pH = 6.5. A muscle myoblast cell (C2C12) assay showed that (CS/PGA)(n) multilayer films obviously promote C2C12 attachment and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite of hydroxyapatite (HAP) surface-grafted with poly(L-lactide) (PLLA) (g-HAP) shows a wide application for bone fixation materials due to its improved interface compatibility, mechanical property and biocompatibility in our previous study. In this paper, a 3-D porous scaffold of g-HAP/poly (lactide-co-glycolide) (PLGA) was fabricated using the solvent casting/particulate leaching method to investigate its applications in bone replacement and tissue engineering. The composite of un-grafted HAP/PLGA and neat PLGA were used as controls. Their in vivo mineralization and osteogenesis were investigated by intramuscular implantation and replacement for repairing radius defects of rabbits. After surface modification, more uniform distribution of g-HAP particles but a lower calcium exposure on the surface of g-HAP/PLGA was observed. Intramuscular implantation study showed that the scaffold of g-HAP/PLGA was more stable than that of PLGA, and exhibited similar mineralization and biodegradability to HAP/PLGA at the 12-20 weeks post-surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion of water in a phase-separated biodegradable poly(ester urethane) shape-memory polymer with poly(E-caprolactone) (PCL) as the soft segment was investigated using time-resolved FTIR-ATR. On the basis of the band fitting and water ordering in drawn films, the broad water band in the 3800-2800 cm(-1) region was decomposed into four bands located at 3620, 3510, 3400, and 3260 cm(-1), and the first two components at 3620 and 35 10 cm(-1) were assigned to the vibrations of antisymmetric and symmetric stretching of water hydrogen bonded with the C=O group of the soft segment. The other two were associated with water bonded to the urethane hard segments in the forms of N-H:O-H:O=C bridge hydrogen bond and double hydrogen bonds with two C=O groups, respectively. Furthermore, band fitting and two-dimensional correlation analyses revealed that in the diffusion process, water first diffuses into the continuous soft-rich PCL phase and then into the hard-rich urethane domains, forming double hydrogen bonds with two C=O groups prior to the bridge hydrogen bond in the form of N-H:O-H:O=C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L-lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen-bonded N-H stretching band. The interconversion between the "free" and hydrogen-bonded N-H and C=O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C=O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 degrees C/min or higher, the crystallization of the PLLA soft segments was prohibited.