188 resultados para Malaguide Complex
Resumo:
The crystal structure of Eu(TFPB)(3)bpy [TFPB: 4,4,4-trifluoro-1-phenyl-1,3-butanedione, bpy: 2,2'-bipyridyl] has been determined by single crystal X-ray diffraction and the coordination geometry of Eu atom is a square antiprism. The complex can give the characteristic luminescence of Eu3+ upon UV excitation.
Resumo:
A new europium (III) complex Eu(HFNH)(3)Phen (HFNH: 4, 4, 5, 5, 6, 6, 6-heptafluoro-1-(2-naphthyl) hexane-1,3-dione; phen: 1, 10-phenanthroline) was synthesized and its triboltuninescent phenomenon was observed. Photoluminescence and triboluminescence spectra were successfully determined. The most intense triboluminescent emission originates front the transition of the, central Eu3+ ion from D-5(0) level to F-7(2) level. The triboluminescent spectrum is basically similar to that of photoluminescence, which correlates with the disorders of F atoms.
Resumo:
Electroluminescence (EL) devices with Eu(HTH)(3)phen [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione, phen: I 10-phenanthroline] as an emissive centre were fabricated using vacuum evaporation. In addition to the Eu3+ 5D0 --> F-7(J) (J = 0-4) lines that were visible in the photoluminescence signal, the device also showed strong emission from the D-5(1) --> F-7(J) (J = 0-4) transitions. The enhanced emission from the D-5(1) F-7(J) (J = 0-4) transitions was attributed to the increased excitation intensity in the EL device. The luminescence lifetimes of the 5 D, and 5 Do levels were measured to be 0.6 mus and 866 mus, respectively.
Resumo:
Improvement of the sensitivity of electrochemical sandwich enzyme immunoassay has been achieved by electrodepositing redox polymer on screen-printed carbon electrode surface, on which the sandwich complex was formed.
Resumo:
The complex protein folding kinetics in wide temperature ranges is studied through diffusive dynamics on the underlying energy landscape. The well-known kinetic chevron rollover behavior is recovered from the mean first passage time, with the U-shape dependence on temperature. The fastest folding temperature T-0 is found to be smaller than the folding transition temperature T-f. We found that the fluctuations of the kinetics through the distribution of first passage time show rather universal behavior, from high-temperature exponential Poissonian kinetics to the relatively low-temperature highly nonexponential kinetics. The transition temperature is at T-k and T-0, T-k, T-f. In certain low-temperature regimes, a power law behavior at long time emerges. At very low temperatures ( lower than trapping transition temperature T< T-0/(4&SIM;6)), the kinetics is an exponential Poissonian process again.
Resumo:
Gadolinium heteropoly complex K-17[Gd(P2W17O61)(2)] has been evaluated by in vitro and in vivo experiments as a potential contrast agent for magnetic resonance imaging (MRI). The thermal analysis and conductivity study indicate that this complex has good thermal stability and wide pH stability range. The T-1 relaxivity is 7.59 mM(-1) s(-1) in aqueous solution and 7.97 mM(-1) s(-1) in 0.725 mmol l(-1) bovine serum albumin (BSA) solution at 25degreesC and 9.39 T, respectively. MR imaging of three male Sprague-Dawley rats showed remarkable enhancement in rat liver after intravenous injection, which persisted longer than with Gd-DTPA. The signal intensity increased by 57.1 +/- 16.9% during the whole imaging period at 0.082 mmol kg(-1) dose. Our preliminary in vitro and in vivo studies indicate that K-17[Gd(P2W17O61)(2)] is a potential liver-specific MRI contrast agent.
Resumo:
We report here that a cubane-like europium-L-aspartic acid complex at physiological pH can discriminate between DNA structures as judged by the comparison of thermal denaturation, binding stoichiometry, temperature-dependent fluorescence enhancement, and circular dichroism and gel electrophoresis studies. This complex can selectively stabilize non-B-form DNA polydApolydT but destabilize polydGdCpolydGdC and polydAdTpolydAdT. Further studies show that this complex can convert B-form polydGdCpolydGdC to Z-form under the low salt condition at physiological temperature 37 degrees C, and the transition is reversible, similar to RNA polymerase, which turns unwound DNA into Z-DNA and converts it back to B-DNA after transcription. The potential uses of a left-handed helix-selective probe in biology are obvious. Z-DNA is a transient structure and does not exist as a stable feature of the double helix. Therefore, probing this transient structure with a metal-amino acid complex under the low salt condition at physiological temperature would provide insights into their transitions in vivo and are of great interest.
Resumo:
Different DNA selectivity was found for the newly synthesized europium-L-valine complex. Unexpected DNA and RNA selection results showed that europium-L-valine complex can cause single-stranded polydA and polyrA to self-structure. The sigmoidal melting curve profiles indicate the transition is cooperative, similar to the cooperative melting of a duplex DNA. This is different from another europium amino acid complex, europium-L-aspartic acid complex which can induce B-Z transition under the low salt condition. To our knowledge, there is no report to show that a metal-amino acid complex can cause the self-structuring of single-stranded DNA and RNA.
Resumo:
This paper deals with the dynamic rheological behavior of polypropylene/polyamide6 (PP/PA6) uncompatibilized blends and those compatibilized with a maleic anhydride grafted PP (PP/PP-g-MAH/PA6). The terminal relaxation times of the blends predicted by the Palierne emulsion model were compared with those obtained from experimental relaxation time spectra. The Palierne model succeeded well in describing PP/PA6 uncompatibilized blends with relatively low dispersed phase contents (10 wt%) and failed doing so for those of which the dispersed contents were high (30 wt%). It also failed for the compatibilized ones, irrespective of the dispersed phase content (10 or 30 wt%) and whether or not interface relaxation was taken into consideration. In the case of the uncompatibilized blend with high dispersed-phase content, interconnections among inclusions of the dispersed phase were responsible for the failure of the Palierne model. As for the compatiblized blends, in addition to particle interconnections, the existence of emulsion-in-emulsion (EE) structures was another factor responsible for the failure of Palieme model.
Resumo:
A novel supramolecular inclusion complex of alpha-CD/C-60 was synthesized using anionic C-60. The reaction progress was monitored in situ by visible and near-IR spectroscopy. The obtained complex was characterized by UV-vis, C-13 NMR, MALDI-TOF, and cyclic voltammetry. The induction and dispersion forces are considered to be the major driving forces for the formation of a resulting alpha-CD/C-60(.-) inclusion complex.
Resumo:
The present work describes a convenient approach to fabricate networked nonspherical gold nanostructures by using [G-2]-CO2H dendrimer and toluene as capping and bridging agents in a CH2Cl2 and H2O biphasic system. A controlled linear assembly is achieved without the use of any catalyst at room temperature. UV-vis spectrum, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) analysis show that the product is well networked nanostructures with diameter of 4-10 nm and consists of coalesced face-centered cubic gold nanocrystals. Extended experiments reveal that both benzene and dimethylbenzene can also inhabit the gold ions to make them crosslinked, prolong the nucleation points and eventually facilitate the formation of the networks.
Resumo:
A novel self-assembled layer consisting of water tetramers and nitrate anions has been observed in the [Co(1,10-phenanthroline)(2)(NO3)]center dot(NO)(3)center dot 4H(2)O complex. X-ray crystallography and FT-IR spectroscopy indicate that although the water tetramers exist in an energetically less stable uudd configuration, the anionic host environments may play an important role in the formation and stabilization of the water clusters.
Resumo:
An organic light-emitting diode fabricated by doping a europium, complex tris(dibiphenoylmethane)-mono (phenanthroline)-europium (Eu(DBPM)(3) (Phen)) into polymer poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene) and poly(N-carbazole) was realized by spin coating. Comparison with other europium complexes, due to the existence of a larger spectral overlap between Eu(DBPM)(3)(Phen) and poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4phenylene), a high efficiency red emission was achieved. The device showed a turn-on voltage of 5.2 V The maximum efficiency reached 0.47 cd/A at luminance of 50 cd/m(2). The maximum luminance can reach 150 cd/m(2) at 95 mA/cm(2). To the best of our knowledge, this is one of the best results based on europium complexes by spin-casting method.
Resumo:
This paper describes a simple approach to fabricate aggregates composed of monodispersed silica microspheres by modified micromolding in capillaries (MIMIC). Two different kinds of contact modes, namely, conformal contact and non-conformal contact, between the poly(dimethylsiloxane) (PDMS) mold and the underlying prepatterned substrate, can be controlled during the micromolding, which result in the formation of different aggregates under the influence of template confinement and capillary forces. These aggregates, including woodpile structure, discoid, conoid and rectangular clusters, possess well-controlled sizes and orientation. The possible mechanisms for the formation of different aggregates are discussed in detail.
Resumo:
Stacked organic light-emitting devices (OLEDs) based on a europium complex Eu(TTA)(3) (Tmphen) (TTA = thenoyltrifluoroacetone,Tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) were fabricated. In this stacked OLEDs, Li:BCP/V2O5 was used the intermediate charge generation layer sandwiched between two identical emissive units consisting of TPD/CBP:DCJTB:Eu(TTA)(3)(Tmphen)/BCP. As expected, the brightness and electroluminescent (EL) current efficiency were approximately enhanced by double times that of conventional single-unit devices. The stacked OLEDs showed the maximum luminance up to 3000 cd/m(2) at a current density of 190 mA/cm(2) and a current efficiency of 14.5 cd/A at a current density of 0.08 mA/cm(2). At the brightness of 100 cd/m(2), the current efficiency reached 10 cd/A at a current density of 1.6 mA/cm2.