217 resultados para MODIFIED IN-SITU PROCESSES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ STM has been used to study the structure of hemoglobin(Hb) in two kinds of organic media. In hydrophobic organic solvent such as carbon tetrachloride, the structure of Hb is almost the same as in aqueous solution, similar to its native structure. However, when in hydrophilic organic solvent such as dimethylformamide, the two dimers of Hb molecule become separate and unfold to a certain extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, epoxidation of ethylene propylene diene rubber by in situ generated performic acid is discussed. The samples have been characterized by infra-red and H-1-nuclear magnetic resonance analyses. Quantitative analysis of the reaction products is made possible by using the methyl deformation band at 1377 cm(-1) as internal standard. The conversion of double bonds increases rapidly within the first 1 h, then gradually, over 2 h, has only a slight increase. The maximum conversion ratio of double bonds is about 70%. The relative content of epoxy groups has a top value at about 7 h. The side reactions are also discussed. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A special electrodeposition process of palladium was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). A kind of palladium(IV) complex was attached to the highly oriented pyrolytic graphite (HOPG) electrode surface by electro-oxidation of palladium(II) complex first, and was then reduced to palladium particles. The surface complexes and particles of palladium were both characterized by in situ STM and XPS. The Pd particles are in the nanometer range of size and exhibit electrocatalytic activity towards the oxidation of hydrazine and hydroxylamine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic states of cytochrome c multilayers on electrochemically pretreated highly oriented pyrolytic graphite (HOPG) have been studied by in-situ scanning tunnelling microscopy (STM) under potential control of both the tip and the substrate in cytochrome c and phosphate buffer solution. The dynamic characterization of cytochrome c multilayers and relatively stable adsorbed single cytochrome c molecules scattered on HOPG imply that physically adsorbed multilayers were more easily influenced by the STM tip than those of chemically adsorbed single molecules. In-situ STM images of chemically adsorbed cytochrome c molecules with discernible internal structures on HOPG revealed that morphologies of cytochrome c molecules also suffered tip influence; possible tip-sample-substrate interactions have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ electrochemical scanning tunneling microscopy (ECSTM) has been employed to follow the renewal process of a graphite electrode accompanied by flavin adenine dinucleotide (FAD) electrochemical reaction which involves adsorption of the reduced form (FADH(2)) and desorption of the oxidized form (FAD). The renewal process initiates from steps or kinks on the electrode surface, which provide high active sites for adsorption. This renewal depends on the working electrode potential, especially in the range near the FAD redox potential. Our experiment suggests that delamination of the graphite surface is caused by interaction between the substrate and adsorbed molecules. A simple model is proposed to explain this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemically deposited poly(o-phenylenediamine) film on a Pt electrode has been investigated utilizing in situ external reflection FTIR spectroelectrochemistry technique. The prepared ladder polymer film is found to be partially ring-opened. The dopant ClO4- is evidenced to orient in such a way that more than one oxygen atom attach to the charge sites of the polymer. This suggests that positive charges of oxidized polymer are partially delocalized over the whole chains. The proton movement observed during the oxidation reaction is associated with the solvated MeCN molecule. It is proposed that the proton diffusion, dissolvation and protonation of the film may be essential to the electrochemical reduction reaction of the film. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobilization of protein molecules is a fundamental problem for scanning tunnelling microscopy (STM) measurements with high resolution. In this paper, an electrochemical method has been proved to be an effective way to fix native horseradish peroxidase (HRP) as well as inactivated HRP from electrolyte onto a highly oriented pyrolytic graphite (HOPG) surface. This preparation is suitable for both ex situ and in situ electrochemical STM (ECSTM) measurements. In situ STM has been successfully employed to observe totally different structures of HRP in three typical cases: (1) in situ ECSTM reveals an oval-shaped pattern for a single molecule in neutral buffer solution, which is in good agreement with the dimension determined as 6.2 x 4.3 x 1.2. nm(3) by ex situ STM for native HRP; (2) in situ ECSTM shows that the adsorbed HRP molecules on HOPG in a denatured environment exhibit swelling globes at the beginning and then change into a V-shaped pattern after 30 min; (3) in situ ECSTM reveals a black hole in every ellipsoidal sphere for inactivated HRP in strong alkali solution. The cyclic voltammetry results indicate that the adsorbed native HRP can directly catalyse the reduction of hydrogen peroxide, demonstrating that a direct electron transfer reduction occurred between the enzyme and HOPG electrode, whereas the corresponding cyclic voltammograms for denatured HRP and inactivated HRP adsorbed on HOPG electrodes indicate a lack of ability to catalyse H2O2 reduction, which confirms that the HRP molecules lost their biological activity. Obviously, electrochemical results powerfully support in situ STM observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we focus on the surface morphology of polypyrrole film by using in situ atomic force microscopy (AFM). The formation process of polypyrrole film and the transformation process of the film from the oxidized to reduced state were clearly observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of the potential of anodic oxidation and of potential cycling on the surface structure of a highly oriented pyrolytic graphite (HOPG) electrode were observed by in situ electrochemical scanning tunnelling microscopy (ECSTM) in dilute H2SO4 solution with atomic resolution. With potential cycling between -0.1 V and 1.8 V vs. Ag/AgCl (sat. KCI), some atoms on the top layer of HOPG protrude out of the base plane, and the graphite lattice of these protrusions is still intact but is strained and expanded. With further potential cycling, some protrusions coalesced and some grew larger, and an anomalous superperiodic feature was observed (spacing 90 Angstrom with a rotation 30 degrees relative to atomic corrugations) which superimposed on the atomic corrugation of HOPG. On the topmost of these protrusions, some atoms form oxides and others are still resolved by the ECSTM image. With potential cycling between -0.1 V and + 2.0 V vs. Ag/AgCl (sat. KCl), damage to freshly cleaved HOPG surface is more serious and fast, some ridges are observed, the atomic structure of the HOPG surface is partially and then completely damaged due to the formation of oxide. We also found that anodic oxidation occurred nonuniformly on the surface of HOPG near defects during potential cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, convenient and versatile thin layer reflection Fourier transform IR microspectroelectrochemical (FTIRMSEC) cell has been described and characterized. Electrochemistry and in situ FTIR microspectroscopy were studied by using the hexacyanoferrate redox couple in aqueous sulphate solution, indicating that this type of cell is characteristic of both micro- or ultramicroelectrode and thin layer spectroelectrochemistry. Furthermore, the application of this FTIRMSEC cell to IR for characterization of the products of electrochemical reactions was carried out for the oxidation of (mesotetraphenylporphinato)manganese(III) perchlorate in dichloromethane + tetrabutylammonium perchlorate solution. Finally, the advantages and problems of this type of cell compared with a conventional optically transparent thin layer FTIR spectroelectrochemical cell were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase behavior, thermal, theological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers form optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical redox behavior of bilirubin (BR IValpha), biliverdin (BV IValpha) and their oxidized product bile-purpurin (Bi-Pu) have been studied by in situ spectroelectrochemical techniques, which reveals that the transformation of BR IValpha [GRA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early stages of the electrodeposition of nickel on highly oriented pyrolytic graphite (HOPG) were investigated by in situ scanning tunnelling microscopy, scanning electron microscopy and electrochemical measurements. Experimental results showed that t

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrooxidation reaction of biliverdin (BY) is studied by in situ spectroelectrochemistry with rapid spectra scanning in an optically transparent thin-layer cell. The study reveals that the oxidation process of BY is very complicated and involves many stages. The average formal potential of BY is obtained for the first time as E-degrees' = 0.634 V (vs- Ag/AgCl), and the electrooxidation mechanism of BY is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly repetitive satellite sequence was previously identified in the Pacific oyster Crassostrea gigas Thunberg. The sequence has 168 bp per unit, present in tandem repeats, and accounts for 1% to 4% of the genome. We studied the chromosomal location of this satellite sequence by fluorescence in situ hybridization (FISH), A probe was made by polymerase chain reaction and incorporation of digoxigenin-11-dUTP. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. FISH signals were located at centromeric regions of 7 pairs of the Pacific oyster chromosomes. No interstitial site was found. Signals were strong and consistent on chromosomes 1, 2, 4, and 7, but weak or variable oil chromosomes 5, 8, and 10. No signal was observed on chromosomes 3, 6, and 9. Our results showed that this sequence is clearly a centromeric satellite, disputing its previous assignment to the telomeric and submetacentric regions of 2 chromosomes. No signal was detected in the American oyster (Crassostrea virginica Gmelin).