284 resultados para MEMBRANE PHOSPHOLIPID ASYMMETRY
Resumo:
A novel kind of K+ sensor with valinomycin-incorporated bilayers supported on a gold electrode consisting of self-assembled alkanethiol monolayers (SAMs) and a lipid monolayer has been fabricated successfully. The lipid monolayer is deposited on the alkylated surface of the first alkanethiol monolayer through three different methods, such as the Langmuir-Blodgett (LB) technique, painted method and painted-frozen method. The response of K + sensors produced by a painted or painted-frozen lipid monolayer on an alkanethiol alkylated gold electrode is larger than that by the LB method, which is due to the difference in fluidity of the three kinds of bilayers. Selectivity coefficients KK+, Na+, KK+, Li+, KK+, Ca2+ and KK+, Mg2+ are 10(-4), 10(-4), 2 x 10(-5) and 3 x 10(-5) respectively, and there is no obvious difference among different fabricating methods. A linear response toward the potassium ion was found in the range from 10(-1) M to 10(-5) M with the detection limit of 10(-6) M. The sensor has a slope of 60 mV per decade. Meanwhile, the longevity of the sensor was improved obviously for at least two months at about -10 degrees C. The higher stability shows the possibility to fabricate a practical biosensor.
Resumo:
Cyclic voltammetry was employed to study the influence of sterols on the lipophilic ion transport through the BLM. The mole fraction of the sterols (cholesterol, oxidized cholesterol). as referred to total lipid, was varied in a range of 0-0.8. Data demonstrate that a thin-layer model is suitable to this BLM system. By this model, the number of charges transported per lipophilic ion, the concentration of the ion in the membrane bulk phase and the aqueous/membrane phase partition coefficient could be calculated. These parameters proved that sterols had an obvious influence on the lipophilic ion transport. Cholesterol had a stronger influence on the ion transport than oxidized cholesterol. Its incorporation into egg lecithin membranes increased the partition coefficient beta of the ion up to more than 3-fold. Yet, oxidized cholesterol incorporated into egg lecithin membranes only increased the beta up to less than 2-fold, and the beta had no great variation at different oxidized cholesterol mole fractions. The higher beta obtained was partly due to the trace amount of solvent existing in the core of the lipid bilayers. At the different sterol mole fractions, combining the change of beta with the change of peak current, we also concluded that sterols had somewhat inhibiting effect on the ion transport at the higher sterols mole fraction (>0.4). These results are explained in terms of the possible change of dipole potential of the membrane produced by sterols and the decrease of the membrane fluidity caused by the condensation effect of sterols and the thinning effect caused by sterols. The substituting group (in the oxidized cholesterol) had some inhibiting effects on the ion transport at higher mole fractions (oxidized cholesterol mole fraction >0.4).
Resumo:
The interactions of lanthanide ions and the Ln-DTPA (DTPA = diethylenetriaminepentaacetate) complex with di palmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE) bilayers are studied by 2D NOESY and FT-Raman spectroscopy. Proton NMR spectroscopic results show that lanthanide ions combine with phosphate groups in the polar region of the outer layer of DPPC liposomes, leading to the separation in chemical shift of the proton signal of N(CH3)(3) The conformational change of the O-C-C-N+ backbone from the gauche conformer to the trans one is not found; i.e., the orientation of the polar headgroup is still parallel to the surface of the bilayers. The Ln-DTPA complex at low concentration in a pH 7.4 solution localizes far away from bilayers and thereby has little effect on the structure of bilayers. The FT-Raman spectroscopic results indicate that lanthanide ions affect strongly the fluidity of acyl chains of DPPE bilayers while the Ln-DTPA complex affects it slightly.
Resumo:
Long-range ordered stripes domain structures were observed in Dipalmitoylphosphatidylcholine (DPPC) Langmuir-Blodgett monolayer film which was spread on the subphase of lanthanide ion (Eu3+) solution and transferred to a freshly cleaved mica substrate by vertical deposition. This novel phenomenon was discussed in terms of the competitive interaction of dipole-dipole and electrostatic interactions of the DPPC molecules combined with lanthanide ions with those DPPC molecules free of lanthanide ions.
Resumo:
The transfer of chloride ions into a low resistance anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In all cases, concentration polarization of Cl- ions is exterior to the membrane. It controls the flux and produces the limiting currents: either steady state or transient (peak type) current. In CV experiments, when the size of the holes in the membrane was much smaller than the distance between membrane holes, the Cl- anion transfer showed steady state voltammetric behavior. Each hole in the membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in the membrane was large or the distance between membrane holes was small, the CV curve of the Cl- anion transfer across the membrane showed a peak shape, which was attributed to linear diffusion. In AC impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low DC bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing DC bias and only one semicircle was observed at higher DC bias. The parameters related to kinetic and membrane properties were discussed.
Resumo:
A novel idea relating to the selective barrier layer of a composite membrane is described. The effective interface of the composite membrane could act as a barrier layer which could be controlled to an ideally ultrathin thickness. A new type of polyamide composite membrane was prepared according to this idea, which possessed permeability and chemical resistance more than one magnitude greater than those of ordinary polyamide composite membranes. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Truly chlorine-resistant polyamide reverse osmosis composite membranes were prepared by cross-linking the interface of the composite membrane. Such membranes possessed chlorine resistance one order of magnitude more than those of the commercially used polyamide composite membranes. The effect of the degree of cross-linking on chlorine resistance was also described. (C) 1996 John Wiley & Sons, Inc.
Resumo:
One and two dimentional NMR methods were used to investigate the interactions of lanthanide complexes (Lncit(2) and Ln-DTPA) with phospholipid bilayers, The results showed that in the phospholipid bilayers dispersion containing citrate ligand at pH 7.4, lanthanide ions would initially combine with citrate ligand and form Lncit, complexes which have little effect on the structure of phospholipid bilayers. Ln-DTPA complex does not affect the bilayers structure either. These results provided important experimental data for evaluating scientifically the toxicities of lanthanide ions when they were introduced into the biological body.
Resumo:
New polybutadiene-based surfactants (LYF) were synthesized by sulfonation of liquid polybutadiene with acetal sulfate at an elevated temperature, and their properties in a liquid surfactant membrane (LSM) separation process were examined by comparison with the two polyisobutylene-based surfactants ECA4360 and EM301. It was found that LYF surfactants had satisfactory overall properties as regards stability, swelling, and demulsification Of the W/O emulsion in the cases of both acidic and caustic internal aqueous phases.
Resumo:
The voltammetric behavior of cytochrome c entrapped in hydrogel membranes at paraffin wax-impregnated spectroscopic graphite electrodes (WISGE) was studied in this paper. A pair of well-defined peaks appeared at +70 mV (vs. Ag/AgCl). Beside these two peaks, another pair of peaks emerged at around +225 mV. Further investigations suggested that at least three states of cytochrome c existed in the membranes due to the special structure of the hydrogel. The native conformation of cytochrome c molecules was stabilized by the hydrophilic environment that was formed by the hydroxyl structure of the membranes and facilitated the cytochrome c electron transfer reaction at +70 mV. The molecules directly adsorbed on the surface of the graphite electrode were responsible for the redox peaks at around +225 mV. Whether the adsorption peaks were detectable or not was related to the thickness of membranes and the pre-retaining time before the formation of membranes.
Resumo:
The oxygen permselectivity of a poly[1-(trimethylsilyl)-1-propyne) (PTMSP) membrane was drastically improved by plasma polymerization of fluorine-containing monomers. The effects of such plasma polymerization conditions as deposition time, plasma power an
Resumo:
The swelling processes of an annealed poly (vinyl alcohol) membrane, a NaOH-crosslinked poly (vinyl alcohol) membrane, a poly (vinyl alcohol)-N,N'-methylene bisacrylamide irradiation-crosslinked membrane and a poly (vinyl alcohol)/poly(AMcoAANa) blend membrane were investigated. Water was preferentially sorbed by all four membranes. The selective sorption factor alpha(s) and the selective diffusion factor alpha(d) were defined, and were used to characterize the effects of sorption and diffusion on selectivity. The results have shown that preferential sorption has a marked effect on selectivity. The mean diffusion coefficients and pervaporation properties of the four membranes are also discussed.
Resumo:
The porosity and the hydrophobicity of membranes are two essential requirements for membrane distillation (MD) of aqueous solutions. So far, the hydrophobic porous membranes used in MD studies have been prepared from hydrophobic materials. In this work, hydrophilic cellulose acetate and cellulose nitrate membranes were modified into hydrophobic membranes by radiation grafting polymerization and plasma polymerization, and used in MD studies successfully. The results indicated that modified membranes with good performance in MD can be obtained if the modifying conditions are controlled appropriately. Especially plasma polymerization, in which many particular kinds of monomer could be polymerized onto the surface of porous materials, has become an efficient method to prepare hydrophobic porous membrane with high performance from hydrophilic membranes. It will stimulate the development and practical application of MD.
Resumo:
In this paper, hydrophilic microporous cellulose nitrate membranes have been surface-modified by plasma polymerization of octafluorocyclobutane (OFCB). The microporous composite membranes with a hydrophilic layer sandwiched between two hydrophobic layers have been obtained. The obtained composite membranes have been used in a membrane distillation (MD) process and have exhibited good performance. The effects of polymerization conditions, such as glow-discharge power and deposition time, on the structures and MD performances of the obtained composite membranes have been investigated by SEM, X-ray microscopical analysis, and XPS. The polymerization conditions should be as mild as possible in order to prepare the hydrophobic composite membrane with good MD performance. The typical MD behaviors of the obtained hydrophobic composite membranes are in agreement with that of hydrophobic membranes directly prepared from hydrophobic polymeric materials, like PVDF, PTFE, or PP.
Resumo:
The solution of non-volatile solutes can be concentrated to saturation by membrane distillation. If the solute is easy to crystalize, the membrane distillation-crystallization phenomenon will appear during the membrane distillation of saturated solutions. It is possible that crystalline products are separated from concentrated solutions by a membrane process. In this work the PVDF capillary membrane, which was improved on hydrophobicity by using LiCl instead of a water-soluble polymer as an additive, has been used for treating the waste water of taurine. The crystalline product has been obtained from the waste water by the membrane distillation-crystallization technique. The results have shown good prospects for a membrane distillation application for treatment of industrial waste water.