188 resultados para Ionic implantation
Resumo:
Three comb polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were synthesized and characterized, and the ionic conductivity of CP/salt complexes is reported. The conductivity of these complexes was about 10(-5)-10(-6) S cm(-1) at room temperature. The conductivity, which displayed non-Arrhenius behaviour, was analysed using the Vogel-Tammann-Fulcher equation. The conductivity maxima appear at lower salt concentration, when CP has longer side chains. Infrared (i.r.) was used to study the cation-polymer interaction. I.r. results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring. (C) 1997 Elsevier Science Ltd.
Resumo:
Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with lithium salts to form amorphous polymer electrolytes. CP/salt complexes showed conductivity up to 10(-5)Scm(-1) at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.
Resumo:
An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.
Resumo:
Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type-O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with LiNO3 to form an amorphous polymer electrolyte. CP/salt complexes showed conductivity up to 10(-5) S/cm at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.
Resumo:
Three comb polymers(CP) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were prepared from methyl vinyl ether/maleic anhydride alternating copolymer. Homogeneous amorphous polymer electrolytes were made from CP and LiCF3SO3 or LiClO4 by solvent-casting method, and their conductivities were measured as a function of temperature and salt concentration. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation. The conductivity maximum appears at lower salt concentration when CP has longer side chains. XPS was used to study the cation-polymer interaction.
Resumo:
Gel electrolytes were prepared by thermal polymerization of diethylene glycol dimethacrylate (DIEGD) or its copolymer with methoxy polyethylene glycol monomethacrylate, molecular weight 400 (PEM(400)), at a molar ratio of 3/1 in the presence of propylene carbonate (PC) and LiClO4. Conductivity was measured by impedance spectroscopy. It was found that the conductivity data follow the Arrhenius equation in the homopolymer gel system, while the VTF equation holds true in the copolymer gel system. An increase in conductivity was observed in the copolymer gel system. However, whether in the homopolymer or in the copolymer gel system, a maximum ambient temperature conductivity was found at a salt concentration near 1.50 mol/l. Further, the activation energy values calculated from Arrhenius plots for the homopolymer gel system tended to reach a minimum value with increasing salt concentration. (C) 1996 Elsevier Science Ltd
Resumo:
Gel electrolytes have been prepared by thermal polymerization of poly(polyethylene glycol dimethacrylate) (P(PEGD)) in the presence of propylene carbonate (PC) and alkali metal salts, such as LiClO4, LICF(3)SO(3) and LiBF4. The conductivity was studied by means of impedance spectroscopy, and it is found that the temperature dependence of conductivities follow a Arrhenius relationship when the molar percentage of PC is higher than 75% or LiClO4 concentration is lower than 0.9 mol/l. However, when LiCF3SO3 or LiBF4 is used instead of LiClO4 as the salt, the situation is different. For LICF(3)SO(3), the Arrhenius relationship almost holds true for all the salt concentrations studied; while for LiBF4, the Arrhenius equation hardly fits for any salt concentration. The dependence of activation energy on salt concentration is also examined, both for LiClO4 and LiCF3SO3, the values of E(a) tend to reach a minimum value with increasing salt concentration. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
A comb-shaped polymer (BM350) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer. Homogeneous amorphous polymer electrolyte complexes were made from the comb polymer and LICF(3)SO(3) by solvent casting from acetone, and their conductivities were measured as a function of temperature and salt concentration. Maximum conductivity close to 5.08 X 10(-5) Scm(-1) was obtained at room temperature and at a [Li]/[EO] ratio of about 0.12. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model. The results of mid-IR showed that the coordination of Li+ to side chains made the C-O-C band become broader and shift slightly. X-ray photoelectron spectroscopy analysis indicated that the oxygen atoms in the two situations could coordinate to Li+ and this coordination resulted in the reduction of the electron orbit binding energy of F and S.
Resumo:
In order to raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a non-crystalline two-component epoxy network was synthesized by curing diglycidyl ether of polyethylene glycol (DGEPEG) with triglycidyl ether of glycerol (TGEG) in the presence of LiClO4 salt, which acts in this system as both a ring opening catalyst and a source of ionic carrier. The structure of the precursors, the curing process and the cured films have been characterized by C-13 NMR, IR, DSC and ionic conductivity measurement techniques. The electrolyte system exhibits an ionic conductivity as high as similar to 10(-5) S/cm at 25 degrees C and is mechanically self-supportable. The dependence of ionic conductivity was investigated as a function of temperature, salt content, MW of PEG segment in DGEPEG and the proportion of DGEPEG in DGEPEG/TGEG ratio.
Resumo:
The electrical conductivities of pernigraniline after ion implantation with potassium ions were studied experimentally. Pernigraniline films were irradiated with doses ranging from 1 x 10(13) to 1 x 10(17) K+ ions/cm2 at 40 keV. The electrical conductivit
Resumo:
The influence of the substitution of Cu or O by various elements on the magnetic properties of Y2Cu2O5 has been studied. The substitution of Cu by metal ions with unpaired d electrons (M = Co2+, Ni2+) makes the superexchange in Cu2O8 chains stronger, but
Resumo:
The correlation between mechanical relaxation and ionic conductivity was investigated in a two-component epoxy network-LiClO4 electrolyte system. The network was composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG). The effects of salt concentration, molecular weight of PEG in DGEPEG and the proportion of DGEPEG (1000) in DGEPEG/TGEG ratio on the ionic conductivity and the mechanical relaxation of the system were studied. It was found that, among the three influential factors, the former reinforces the network chains, reduces the free volume fraction and thus increases the relaxation time of the segmental motion, which in turn lowers the ionic conductivity of the specimen. Conversely, the latter two increase the free volume and thus the chain flexibility, showing an opposite effect. From the iso-free-volume plot of the shift factor log at and reduced ionic conductivity, it is noted that the plot can be used to examine the temperature dependence of segmental mobility and seems to be useful to judge whether the incorporated salt has been dissociated completely. Besides, the ionic conductivity and relaxation time at constant reference temperature are linearly correlated with each other in all the three cases. This result gives an additional experimental confirmation of the coordinated motion model of the ionic hopping with the moving polymer chain segment, which is generally used to explain the ionic conduction in non-glassy amorphous polymer electrolytes.
Resumo:
CaF_2 single crystal is very useful as optical host materials. It has been systematically studied and widely used in thermoluminescence that rare earth ions were doped into CaF_2 single crystal with chemical methods. However, the ion implan-