174 resultados para In-plane shear equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-waves and multi-component get more and more attentions from oil industry. On the basis of existent research results, My research focuses on some key steps of OBC 4C datum processing. OBC datum must be preprocessed quite well for getting a good image. We show a flow chart of preprocess including attenuation of noise on multi-component datum、elimination ghost by summing P and Z and rotation of horizontal components. This is a good foundation for the coming steps about OBC processing. How to get exact converted point location and to analyze velocity are key points in processing reflection seismic converted wave data. This paper includes computing converted point location, analyzing velocity and nonhyperbolic moveout about converted waves. Anisotropic affects deeply the location of converted wave and the nonhyperbolic moveout. Supposed VTI, we research anisotropic effect on converted wave location and the moveout. Since Vp/Vs is important, we research the compute method of Vp/Vs from post-stack data and pre-stack data. It is a part of the paper that inversing anisotropic parameter by traveltime. Pre-stack time migration of converted wave is an focus, using common-offset Kirchhoff migration, we research the velocity model updating in anisotropic media. I have achieved the following results: 1) using continued Fractions, we proposed a new converted point approximate equation, when the offset is long enough ,the thomsen’s 2 order equation can’t approximate to the exact location of converted point, our equation is a good approximate for the exact location. 2) our new methods about scanning nonhyperbolic velocity and Vp/Vs can get a high quality energy spectrum. And the new moveout can fit the middle and long offset events. Processing the field data get a good result. 3) a new moveout equation, which have the same form as Alkhalifah’s long offset P wave moveout equation, have the same degree preciseness as thomsen’s moveout equation by testing model data. 4) using c as a function of the ratio offset to depth, we can uniform the Li’s and thomsen’s moveout equation in a same equation, the model test tell us choice the reasonable function C can improve the exact degree of Li’s and thomsen’s equation. 5) using traveltime inversion ,we can get anisotropic parameter, which can help to flat the large offset event and propose a model of anisotropic parameter which will useful for converted wave pre-stack time migration in anisotropic media. 6)using our pre-stack time migration method and flow, we can update the velocity model and anisotropic parameter model then get good image. Key words: OBC, Common converted Point (CCP), Nonhyperbolic moveout equation, Normal moveout correction, Velocity analysis, Anisotropic parameters inversion, Kirchhoff anisotropic pre-stack time migration, migration velocity model updating

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentary provenance direction,sedimentary facies,reservoir geological characteristic,pore structure; physical property characteristic,reservoir classification and evaluation ,forthermore,favorable area area are forecasted of Yanchang formation in ZhiDan region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on,in the thesis. The following fruits are mainly achieved in this paper: Yanchang formation stratum is divided and correlated in this entire region, and the characteristic of oil layer unit is detailed discussed , respectively. According to main marker bed and supplementary ones.and research result shows that the source of provenance direction during Yanchang Formation mianly is north-east. Delta and lake are mainly developed in study area ,sub-facies and micro-facies are divided,distribution of sedimentary micro-facies in plane and palaeogeographic evolution are described,and gentle slope type- shallow water delta depositional model is established. Fine-grain arkose sandstone is the main reservoir,and which have experienced such different degree diagenesis as compaction, cementation, replacement and dissolution, and in which compaction and cementation are mainly factors to reduce sandstone physical property and dissolution effectively improved physical property during burial diagenesis procedure. All reservoirs of Yanchang Formation have entered A period of late diagenetic stage according to scheme of diagenesis period division . Intergranular porosity,dissolution porosity,fissure porosity are main pore types. And porosity structure are analyse by mercury penetration capillary pressure parameter,fine-shortness type and fine- length throat type are mainly developed. as a whole,the reservoir, with the characteristic of porosity and permeability altering apparently,strong inhomogeneity , is a medium- porosity and medium permeability one. In plane,higher- porosity and higher-permeability are corresponded well with distributary channel area, physical property and inhomogeneity are affected by both deposition and diagenesis,and distributary channel and underwater distributary channel are favorable facies . According to such characteristic as lithology,physical property,pore structure ,diagenesis and sandstone distribution, the sandy reservoir can be classified 4 types, and the main sandy in every oil layer unit are evaluated according to the standard. The analysis result of petroleum concentration rule shows that Yanchang Formation are with not only favourable oil source rock,reservoir,covering combination ,but also good entrapment condition in study area. Lithology and structure-lithology oil pool are mainly developed ,based on condition of favorable reservoir developments,accounting for deliverability and sandstone superface elevation,zone of profitabilitis are forecasted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the basic geologic conditions, the paper is directed by the modem oil-gas accumulation theory and petroleum system in which typical oil pools are analyzed and the shape of lithologic trap and geologic factors are pointed out. The process during which oil and gas migrate from source rock to lithologic trap is rebuilt, and the accumulation model of oil pool is set up. With the comprehensive application of seismic geologic and log data and paying attention to the method and technology which is used to distinguish lithologic accumulation. Promising structural-lithofacies zones are got and the distribution rule of various lithologic accumulation is concluded. With making use of the biologic mark compound, different reservoirs are compared. As a result, the oil and gas in HeiDimiao come from Nenjiang Group's source rocks; in SaErTu from QingShenkou Group's and Nenjiang Group's, and in PuTaohua. GaoTaizi and FuYang from QingShankou Group's. According to the development and distribution of effective source rock, oil distribution and the comparison in the south of SongLiao basin, the characteristic of basin structure and reservoir distribution is considered, and then the middle-upper reservoir of SongLiao basin south are divided into two petroleum system and a complex petroleum system. Because of the characteristic of migration and accumulation, two petroleum systems can furtherly be divided into 6-7 sub-petroleum systems,20 sub-petroleum systems in all. As a result of the difference of the migration characteristic, accumulation conditions and the place in the petroleum system, the accumulation degree and accumulation model are different. So three accumulation mechanism and six basic accumulation model of lithologic trap are concluded. The distribution of lithologic pools is highly regular oil and gas around the generation sag distribute on favorable structural-lithofacies zones, the type of lithological pool vary regularly from the core of sandstone block to the upper zone. On the basic of regional structure and sedimentary evolution, main factors which control the form of trap are discovered, and it is the critical factor method which is used to discern the lithologic trap. After lots of exploration, 700km~2 potential trap is distinguished and 18391.86 * 10~4 tons geologic reserves is calculated. Oil-water distribution rule of pinch-out oil pool is put up on plane which is the reservoirs can be divided into four sections. This paper presented the law of distribution of oil and water in updip pinch-out reservoir, that is, hydrocarbon-bearing formation in plane can be divided into four zones: bottom edge water zone, underside oil and water zone, middle pure oil zone and above residual water zone. The site of the first well should be assigned to be middle or above pure oil zone, thus the exploration value of this type of reservoir can be recognized correctly. In accordance with the characteristics of seism and geology of low permeability thin sandstone and mudstone alternation layer, the paper applied a set of reservoir prediction technology, that is: (1)seism multi-parameter model identification; (2) using stratum's absorbing and depleting information to predict reservoir's abnormal hydrocarbon-bearing range. With the analysis of the residual resource potential and the research of two petroleum system and the accumulation model, promising objective zones are predicted scientifically. And main exploration aim is the DaRngZi bore in the west of ChangLin basin, and YingTai-SiFangZi middle-upper assembly in Honggang terrace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Productivity prediction is a serious factor to oil reservoir management and working out economic plans so that it is paid great attention to all the time. Gudao Oil Field, which has been yielding more than 100 million tons of crude oil accumulatively since it was put into developing in 1970's as a complete set of oil field, now entering double extra high water-bearing period after productivity construction, stable production and depletion stage. It's main layer series of development is thought to be type of channel sand reservoir in east China. Form channel sand reservoir in upper Guantao Group of Shengli Oil Field, there are several large oil fields such as Gudao, Gudong and Chengdao etc. with almost one-third reserves of whole Shengli Oil Field. It is considered the common characteristics in this area would be that the layer is less developed, the sand distribution is sporadic, the connectivity is weak, the heterogeneity is strong in plane, the oil layer is unconsolidated with big porosity, high permeability and serious sanding, and the oil is heavy. Because of the restricted factors to productivity of this kind of reservoir, it is very significant to study the productivity prediction this kind of reservoir. By selecting the upstream fluvial reservoir in Guantao Group of Neogene system as researching object, the author studied the forecasting technology with heterogeneous reservoir. Firstly, the author constructed the 3D subtle geological model quantificationally through researching exploitation geology in the way of combination of dynamic and static methods. Secondly, by the aid of dynamic material obtained while producing, the author analyzed the oil distribution law and influencing factors, then finished dynamic oil reservoir description on the basis of static oil reservoir description. Thirdly, via comparing and analyzing all the forecasting methods of productivity existed, the author developed a set of method to forecast productivity of single well and oil field which fit to channel sand reservoir. At last, under the support of ORACLE database, with the advanced computer technology, the author programmed the software called 'Channel Sand Reservoir Prediction System'. Up to now, this system has been putting into use in Gudao Oil Field and very successful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mudstone reservoir is a subtle reservoir with extremely inhomogeneous, whose formation is greatly related to the existence of fracture. For this kind of reservoir, mudstone is oil source rock, cover rock and reservoir strata, reservoir type is various, attitude of oil layer changes greatly, and the distribution of oil and gas is different from igneous or clastic rock reservoir as well as from carbonate reservoir of self-producing and self-containing of oil and gas. No mature experience has been obtained in the description, exploration and development of the reservoir by far. Taking Zhanhua depression as an example, we studied in this thesis the tectonic evolution, deposit characteristics, diagenesis, hydrocarbon formation, abnormal formation pressure, forming of fissure in mudstone reservoir, etc. on the basis of core analysis, physical simulation, numerical simulation, integrated study of well logging and geophysical data, and systematically analyzed the developing and distributing of mudstone fissure reservoir and set up a geological model for the formation of mudstone fissure reservoir, and predicted possible fractural zone in studied area. Mudstone reservoir mainly distributed on the thrown side of sedimentary fault along the sloping area of the petroleum generatiion depression in Zhanhua depression. Growing fault controlled subsidence and sedimentation. Both the rate of subsidence and thickness of mudstone are great on the thrown side of growing fault, which result in the formation of surpressure in the area. The unlocking of fault which leads to the pressure discharges and the upward conduct of below stratum, also makes for the surpressure in mudstone. In Zhanhua depression, mudstone reservior mainly developed in sub-compacted stratum in the third segment of Shahejie formation, which is the best oil source rock because of its wide spread in distribution, great in thickness, and rich in organic matter, and rock types of which are oil source mudstone and shale of deep water or semi-deep water sediment in lacustrine facies. It revealed from core analysis that the stratum is rich in limestone, and consists of lamina of dark mudstone and that of light grey limestone alternately, such rock assemblage is in favor of high pressure and fracture in the process of hydrocarbon generation. Fracture of mudstone in the third segment of Shahejie formation was divided into structure fracture, hydrocarbon generation fracture and compound fracture and six secondary types of fracture for the fist time according to the cause of their formation in the thesis. Structural fracture is formed by tectonic movement such as fold or fault, which develops mainly near the faults, especially in the protrude area and the edge of faults, such fracture has obvious directivity, and tend to have more width and extension in length and obvious direction, and was developed periodically, discontinuously in time and successively as the result of multi-tectonic movement in studied area. Hydrocarbon generation fracture was formed in the process of hydrocarbon generation, the fracture is numerous in number and extensively in distribution, but the scale of it is always small and belongs to microfracture. The compound fracture is the result of both tectonic movement and hydrocarbon forming process. The combination of above fractures in time and space forms the three dimension reservoir space network of mudstone, which satellites with abnormal pressure zone in plane distribution and relates to sedimentary faces, rock combination, organic content, structural evolution, and high pressure, etc.. In Zhanhua depression, the mudstone of third segment in shahejie formation corresponds with a set of seismic reflection with better continuous. When mudstone containing oil and gas of abnormal high pressure, the seismic waveform would change as a result of absorb of oil and gas to the high-frequency composition of seismic reflection, and decrease of seismic reflection frequency resulted from the breakage of mudstone structure. The author solved the problem of mudstone reservoir predicting to some degree through the use of coherent data analysis in Zhanhua depression. Numerical modeling of basin has been used to simulate the ancient liquid pressure field in Zhanhua depression, to quantitative analysis the main controlling factor (such as uncompaction, tectonic movement, hydrocarbon generation) to surpressure in mudstone. Combined with factual geologic information and references, we analyzed the characteristic of basin evolution and factors influence the pressure field, and employed numerical modeling of liquid pressure evolution in 1-D and 2-D section, modeled and analyzed the forming and evolution of pressure in plane for main position in different periods, and made a conclusion that the main factors for surpressure in studied area are tectonic movement, uncompaction and hydrocarbon generation process. In Zhanhua depression, the valid fracture zone in mudstone was mainly formed in the last stage of Dongying movement, the mudstone in the third segment of Shahejie formation turn into fastigium for oil generation and migration in Guantao stage, and oil and gas were preserved since the end of the stage. Tectonic movement was weak after oil and gas to be preserved, and such made for the preserve of oil and gas. The forming of fractured mudstone reservoir can be divided into four different stages, i.e. deposition of muddy oil source rock, draining off water by compacting to producing hydrocarbon, forming of valid fracture and collecting of oil, forming of fracture reservoir. Combined with other regional geologic information, we predicted four prior mudstone fracture reservoirs, which measured 18km2 in area and 1200 X 104t in geological reserves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3D wave equation prestack depth migration is the effective tool for obtaining the exact imaging result of complex geology structures. It's a part of the 3D seismic data processing. 3D seismic data processing belongs to high dimension signal processing, and there are some difficult problems to do with. They are: How to process high dimension operators? How to improve the focusing? and how to construct the deconvolution operator? The realization of 3D wave equation prestack depth migration, not only realized the leap from poststack to prestack, but also provided the important means to solve the difficult problems in high dimension signal processing. In this thesis, I do a series research especially for the solve of the difficult problems around the 3D wave equation prestack depth migration and using it as a mean. So this thesis service for the realization of 3D wave equation prestack depth migration for one side and improve the migration effect for another side. This thesis expatiates in five departs. Summarizes the main contents as the follows: In the first part, I have completed the projection from 3D data point area to low dimension are using de big matrix transfer and trace rearrangement, and realized the liner processing of high dimension signal. Firstly, I present the mathematics expression of 3D seismic data and the mean according to physics, present the basic ideal of big matrix transfer and describe the realization of five transfer models for example. Secondly, I present the basic ideal and rules for the rearrange and parallel calculate of 3D traces, and give a example. In the conventional DMO focusing method, I recall the history of DM0 process firstly, give the fundamental of DMO process and derive the equation of DMO process and it's impulse response. I also prove the equivalence between DMO and prestack time migration, from the kinematic character of DMO. And derive the relationship between DMO base on wave equation and prestack time migration. Finally, I give the example of DMO process flow and synthetic data of theoretical models. In the wave equation prestak depth migration, I firstly recall the history of migration from time to depth, from poststack to prestack and from 2D to 3D. And conclude the main migration methods, point out their merit and shortcoming. Finally, I obtain the common image point sets using the decomposed migration program code.In the residual moveout, I firstly describe the Viterbi algorithm based on Markov process and compound decision theory and how to solve the shortest path problem using Viterbi algorithm. And based on this ideal, I realized the residual moveout of post 3D wave equation prestack depth migration. Finally, I give the example of residual moveout of real 3D seismic data. In the migration Green function, I firstly give the concept of migration Green function and the 2D Green function migration equation for the approximate of far field. Secondly, I prove the equivalence of wave equation depth extrapolation algorithms. And then I derive the equation of Green function migration. Finally, I present the response and migration result of Green function for point resource, analyze the effect of migration aperture to prestack migration result. This research is benefit for people to realize clearly the effect of migration aperture to migration result, and study on the Green function deconvolution to improve the focusing effect of migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the growing development and perfection of reservoir describing technology, its research achievements have played an increasingly important role in old oilfields in recent years. Reservoir description quantitatively describes, characterizes and predicts every kind of reservoir characters in 3D space. The paper takes Banbei block reservoir as an object, studies the reservoir characters and residual oil distributing characteristics of gravity flow genetic reservoir, and definitudes potential adjustment direction of reservoir development. Main achievements are gained as follows. Through fine correlation of strati graphic sequence, the classification of layers and single sands of main payzones in Banbei block is ascertained, the classifying methods of sedimentary unit in gravity flow reservoir characterized with picked cyclical marker bed are formed. On the basis of comprehensive logging evaluation, depositional characters of Banbei block are studied, and classifying methods of sedimentary microfacies in gravity flow reservoir are described. The sedimentary background of main oil layers in Banbei block is open lake with shallow water, and belongs to lacustrine underwater gravity flow- lacustrine phase depositional system. Main microfacies types are underwater water course^ water course side-wing, underwater floodplain, between two water courses, and lacustrine mud, etc. Reservoir sands mainly are underwater water course sands. Influenced by distributing characters of gravity flow underwater water course, sand shapes in plane mainly are stripe, finger-shape, tongue-shape. Sand distribution shows obvious split property. Sands overlap each other. According to comprehensive analysis of lithologic data, logging parameters, and dynamic production data, the researching threads and methods of reservoir heterogeneous characters are perfected. The depositional characters of gravity flow underwater water course in Banbei block determine its high reservoir heterogeneity. Macroscopic heterogeneity is studied in many aspects such as the scale of layers, the scale of single sands, in-situ scale, the distribution of interlayer types, the interlayer scale, and heterogeneity in plane. Thus, heterogeneous characters of reservoir are thoroughly analyzed. Through microscopic research of reservoir, the types of porous structure and related parameters are determined. According to the analysis of dynamic production data, the reaction and inner influential factors of reservoir heterogeneity in waterflood development are further revealed. Started with the concept and classifying methods of flow unit, clustering classification which can better meet the requirements of production is formed. The flow unit of Banbei block can be classified into four types. According to comprehensive evaluation, the first and second type of flow unit have better percolating capability and reserving capability. Research thread of 3D model-building and reservoir numerical simulation combined as an integral is adopted. The types and characters of residual oil distribution are determined. Residual oil of Banbei block mainly distributes in the boundary of sands, near the faults, areas with non-perfect injection-production well pattern , undeveloped sands, vertically poor developed layers. On the basis of comprehensive reservoir study, the threads and methods of improving development effect towards reservoir with high water cut, high recovery percent, serious heterogeneity are ascertained. The whole waterflood development effect of Banbei block reservoir is good. Although its water cut and recovery percent is relatively high, there is still some potential to develop. According to depositional characters of gravity flow and actual production situation? effective means of further improving development level are as follows. We should drill new wells in every kind of areas abounding with residual oil, implement comprehensive measures such as increasing liquid discharge, cyclic waterflood, changing fluid direction when injection-production well pattern is perfected, improve water quality, enhance displacement efficiency in flooding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the study of types, even temperature, the character of age-old fluid and fluid pressure of the reservoir fluid-inclusion in the Upper Paleozoic of Ordos Basin , combining with the diagenesis and character of gas geochemistry, reservoir sequence, cause of the low pressure reservoir formation and formation environment have been studied, the following knows are acquired: Abundant fluid-conclusions have developed in sandstone reservoir in Upper Paleozoic of Ordos Basin,and its kinds is numerous , also taking place some changes such as shrinking rock, cracking, stretching after formation. According to formation cause, fluid inclusion is divided into two types:successive and nonsuccessive inclusion. Nonsuccessive inclusion is further divided into brine inclusion, containing salt crystal inclusion, gaseity hydrocarbon conclusion and liquid hydrocarbon conclusion and so on. The gaseity hydrocarbon conclusion distributes at all the Basin, the liquid hydrocarbon conclusion mainly distributes at the East of Basin, and its two kinds of fluorescence color: blue and buff reflects at least two periods of oil filling and oil source of the different maturity. The study of diagenesis has indicated that five periods of diagenesis correspond to five periods inclusion's growth.The first and second period conclusions mainly distribute at the increasing margin of quartz, little amount and low even temperature, containing little gaseity hydrocarbon conclusion; The third and fourth conclusions are very rich, and having multiplicity forms, gaseity hydrocarbon conclusion of different facies, distributing at the increasing margin and crevice of quartz, its even temperature is between 85℃and 135℃;The fifth inclusion is relatively few ,mainly distributing at vein quartz and calcite, and developing few gaseity hydrocarbon conclusion. The fluid in the inclusion is mainly NaCl brine:low and high salinity brine fluid(containing salt crystal).The former salinity is between 0.18% and 18.55%,and mainly centralized distributing at three sectongs: from 0% to 4%, from 6% to 8%, from 10% to 14%, expressing that the alternation of the underground fluid was not intense, the conservation condition was good in different periods. The trapping pressure of the gaseity hydrocarbon conclusion calculated by PVTsim(V10)simulation is between 21.39 MPa and 42.58MPa,the average is 28.99MPa,mainlydistributes at between 24 MPa and 34MPa,and having a character of gradually lower from early to late time. The pressure of SuLiGe and WuShenQi dropped quickly in early time, and YuLin, ShenMu-MIZhi gas area dropped slowly in early and quickly in late time, ha portrait the change of trapping pressure can be divided into three old-age pressure systems: TaiYuan-ShanXi formation, low ShiHeZi formation and high ShiHeZi-ShiQianFeng formation. In plane, the trapping pressure dropped lowly from south to north in main reservoir period, and this reflects the gas migrating direction in the geohistory period. The analysis of gas component and monnmer hydrocarbon isotope indicates that the gas in Upper Paleozoic of Ordos Basin is coal-seam gas. The gas C_1-C_4 rnonnmer hydrocarbon isotopes has distinct differences in different stratums of different areas, and forming YuLin, SuLiGe and ShenMu-MIZhi three different distributing types. To sum up, gas reservoir combination in Upper Paleozoic of Ordos Basin can be divided into three sets of combination of reservoir formation: endogenesis type, near source type and farther source type,and near source gas combinations of reservoir formation is the main gas exploration area for its high gas filling intensity, large reservoir size.