175 resultados para Immersion lithography


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Edwardsiella tarda is an important aquaculture pathogen that can infect a wide range of marine and freshwater fish worldwide. In this study, a modified E. tarda strain, TX5RM, was selected by multiple passages of the pathogenic E. tarda strain TX5 on growth medium containing the antibiotic rifampicin. Compared to the wild type strain, the rifampicin-resistant mutant TX5RM (i) shows drastically increased median lethal dose and reduced capacity to disseminate in and colonize fish tissues and blood; (ii) exhibits slower growth rates when cultured in rich medium or under conditions of iron depletion; and (iii) differs in the production profile of whole-cell proteins. The immunoprotective potential of TX5RM was examined in a Japanese flounder (Paralichthys olivaceus) model as a vaccine delivered via intraperitoneal injection, oral feeding, bath immersion, and oral feeding plus immersion. All the vaccination trials, except those of injection, were performed with a booster at 3-week after the first vaccination. The results showed that TX5RM administered via all four approaches produced significant protection, with the highest protection levels observed with TX5RM administered via oral feeding plus immersion, which were, in terms of relative percent of survival (RPS), 80.6% and 69.4% at 5- and 8-week post-vaccination, respectively. Comparable levels of specific serum antibody production were induced by TX5RM-vaccinated via different routes. Microbiological analyses showed that TX5RM was recovered from the gut, liver, and spleen of the fish at 1-10 days post-oral vaccination and from the spleen, liver, kidney, and blood of the fish at 1-14 days post-immersion vaccination. Taken together, these results indicate that TX5RM is an attenuated E. tarda strain with good vaccine potential and that a combination of oral and immersion vaccinations may be a good choice for the administration of live attenuated vaccines. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

铜管一直是电厂凝汽器的主要应用管材,但由于其抗冲刷和抵御污染物腐蚀的能力差,特别不耐氨蚀,美国和欧洲大量使用不锈钢管替代铜管作为冷凝管,然而不锈钢管在我国的运用仅处于初步阶段。 常使用锌、铝阳极对铜管进行牺牲阳极保护,然而存在着电位差过大、阳极溶解过快的问题。铁基牺牲阳极与铜电位差适当、来源广泛、价格便宜,在一些工程上有所应用,但是目前针对铁基牺牲阳极的理论研究报道很少。 本文选用紫铜管、304不锈钢管作为实验用管材,首先运用实验室全浸实验、极化曲线和电化学阻抗研究了二者在海水和淡水中的腐蚀性能以及CO2、溶解氧对其腐蚀的影响。结果表明:CO2会加速二者的腐蚀,溶解氧却对它们的腐蚀影响不同,促进铜管的腐蚀却抑制不锈钢管的腐蚀;随浸泡时间的延长,紫铜管由于表面产物膜的生成耐蚀性提高,304不锈钢管的耐蚀性却降低;淡水中,304不锈钢管和紫铜管都具有很好的耐蚀性能。随后,运用失重法和极化曲线对比研究了紫铜管、304不锈钢管的氨蚀性能,运用SEM分析和电化学阻抗研究了紫铜在不同浓度氨溶液中的腐蚀机理。发现,304不锈钢管的耐氨蚀能力远远好于铜管;溶解氧是影响氨蚀的关键因素,其对二者氨蚀的影响也不同;紫铜管在低氨浓度和高氨浓度溶液中腐蚀机理和产物不同,低氨浓度时形成保护性的产物膜(CuO 和Cu(OH)2),高氨浓度时由活化溶解控制,生成可溶的[Cu (NH3)4]2+。 选用工业纯铁、35钢为牺牲阳极材料。恒电流实验结果表明它们具有良好的牺牲阳极性能;通过极化曲线和自腐蚀电位测试分析,认为将二者用于铜管牺牲阳极保护是可行的;实验室阴极保护效果测试表明,工业纯铁和35钢对紫铜管具有良好的保护效果,保护度达90%以上。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between microbial colonization of two kinds of passive metals and ennobling of their corrosion potentials (E-corr) were studied. Two types of passive metal coupons were exposed to natural seawater for about ten days. Under laboratory conditions, all corrosion potentials of the samples ennobled for about 200 mV. Epifluorescence microscopy showed that bacteria adsorption was the main process during about the first day immersion and bacteria reproduced in the following days. The bacteria number increased on the metal surface according to an exponential law and the kinetics of bacteria adsorption at the metal surface during this period was proposed. The ennoblement of E-corr was similar to the increasing bacteria number: E-corr increased quickly during the bacteria adsorption process and increased slowly after biofilms had formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibition effect of metal-free phthalocyanine (H2Pc), copper phthalocyanine (CuPc) and copper phthalocyanine tetrasulfuric tetrasodium salt (CuPc center dot S(4)center dot Na-4) on mild steel in I mol/l HCl in the concentration range of 1.0 X 10(-5) to 1.0 X 10(-3) mol/l was investigated by electrochemical test, scanning electron microscope with energy dispersive spectrometer (SEM/EDS) and quantum chemical method. The potentiodynamic polarization curves of mild steel in hydrochloric acid containing these compounds showed both cathodic and anodic processes of steel corrosion were suppressed, and the Nyquist plots of impedance expressed mainly as a capacitive loop with different compounds and concentrations. For all these phthalocyanines, the inhibition efficiency increased with the increase in inhibitor concentration, while the inhibition efficiencies for these three phthalocyanines with the same concentration decreased in the order Of CuPc center dot S(4)center dot Na-4 > CuPc > H2Pc according to the electrochemical measurement results. The SEM/EDS analysis indicated that there are more lightly corroded and oxidative steel surface for the specimens after immersion in acid solution containing 1.0 x 10(-3) mol/l phthalocyanines than that in blank. The quantum chemical calculation results showed that the inhibition efficiency of these phthalocyanines increased with decrease in molecule's LUMO energy, which was different from the micro-cyclic compounds. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative investigation of hot dip Zn-25Al alloy, Zn-55Al-Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn-25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn-25Al alloy coating remains indistinguishable from that for the Zn-55Al-Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn-55Al-Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to - 1,050, - 1,025 and - 880 mV (SCE) for zinc, Zn-25Al alloy and Zn-55Al-Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn-25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn-55Al-Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corrosion rate of low alloy steel in different sea zones has close correlation with the content of the alloy element. From the field data of steel corrosion rates in atmospheric zone, splash zone and immersion zone, regression analysis was used to study the correlation between the corrosion rate of steels and the amount of added alloy elements. Three regression equations were obtained in different sea zones. Based on the equations, the anti-corrosion performance of the alloy elements can be deduced which can be used to screen out low alloy steel with good anti-corrosion performance. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MP-25 resin is a chlorine-containing polymer widely used in coatings. The effects of two types of nano-TiO2 (P-25 and RM301 LP) on MP-25 were studied with saline immersion, UV irradiation, and electrochemical impedance spectroscopy. UV irradiation was evaluated in terms of gloss change and X-ray photoelectron spectroscopy (XPS). The results indicate that, compared to pigment R-930 TiO2, P-25 reduced the immersion resistance and accelerated UV aging of the MP-25 coating, whereas RM301 LP showed the opposite effects. XPS analysis showed that MP-25 resin degraded under UV irradiation via dechlorination and C-C bond breakage, similarly to poly(vinyl chloride), but RM301 LP could inhibit the aging of MP-25 to a certain extent. A skin effect of oxygen and chlorine was identified in MP-25 resin by XPS. RM301 LP could improve the impedance of the MP-25 coating because of its excellent fill capacity. Hence, rutile nano-TiO2 RM301 LP represents an excellent additive for MP-25 resin. (c) 2007 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

近年来,机器人的应用越来越广泛和深入,输电线巡检机器人是当前特种作业机器人的研究热点之一,具有广泛的应用前景和实用价值。本文的研究内容是围绕国家“863”计划支持项目“500KV超高压输电线巡检机器人的研究”展开的。本研究工作针对巡检机器人的关键控制问题,主要由三部分组成:设计了巡检机器人的体系结构,并应用离散事件理论对机器人的任务、行为和动作建模;对巡检机器人双轮同步驱动控制进行了分析,并应用奇异摄动理论设计了控制器;研究了基于单目视觉的输电线立体定位方法及通过视觉伺服完成机器人自主抓线控制。 第一,介绍了巡检机器人的作业环境,重点探讨了机器人机械系统和控制系统的设计与实现。在机械子系统中,详细介绍了巡检机器人的机构实现与越障方法。在控制系统中详细阐述了基于分层递阶的机器人控制系统硬件组成。另外介绍了供电系统、无线传输系统、传感系统的设计与实现。分析了输电线路周围的电磁环境,及其对机器人的影响,并根据分析结果完成了对机器人的电磁防护设计。 第二,开展了输电线巡检机器人体系结构及人机交互系统研究,针对巡检机器人工作特点设计了基于规划和感知行为的混合式体系结构。针对巡检机器人工作环境设计了以机器人为中心的人机交互方式。参考前人建立的离散事件动力系统的层次结构和并行结构,提出了顺序结构并证明了其无阻塞性、可控性和监控器存在性,并结合以上三种结构建立了巡检机器人作业行为的离散动力学模型,分别获得了任务层、行为层和动作层的监控器。 第三,进行了巡检机器人双轮驱动控制研究。巡检机器人双轮行走机构为过驱动系统,对双轮行走系统进行了运动学和动力学建模,将一行走轮设为主动轮另一行走轮设为从动轮。针对两行走轮之间弹性关节导致的控制中的振荡问题,采用奇异摄动理论将系统分为快慢两个子系统;针对巡检机器人系统参数的时变性采用PD自适应算法设计了慢系统控制器;应用最优控制理论设计了快系统控制器。仿真结果验证了该方法的有效性。 第四,进行了输电线视觉定位和视觉伺服抓线问题的研究。输电线巡检机器人的自主越障控制是实现机器人实用化的关键问题。为实现巡检机器人自主越障,采用视觉伺服控制机械手臂自动抓线。为提取输电线图像特征点,针对输电线投影图像特征改进了边缘提取算法,应用聚类算法提取了输电线上的像素点。提出在机械手运动过程中采用EKF(扩展卡尔曼滤波)来实现对输电线的立体定位。在分析了当前基于图像的视觉伺服研究现状,建立了基于图像雅克比矩阵的输电线视觉伺服抓线模型。针对非标定状况下图像雅可比矩阵中的不确定参数,应用I&I(Immersion Invariant)自适应算法来实现无标定图像视觉伺服。针对机器人的动力学不确定性,设计了模糊自适应控制器,并证明了稳定性。仿真验证该方法的有效性,实验验证了基于视觉伺服的抓线控制的有效性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platinum utilization in the gas-diffusion catalyst layer and thin-film catalyst layer is investigated. The morphology of PTFE and Nafion in a simulated catalyst layer is examined by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM). The results show that the platinum utilization of the thin-film catalyst layer containing only Pt/C and Nafion is 45.4%. The low utilization is attributed to the fact that the electron conduction of many catalyst particles is impaired by some thick Nafion layers or clumps. For the gas-diffusion (E-TEK) electrode, the platinum utilization is mainly affected by the proton conduction provided by Nafion. The blocking effect of PTFE on the active sites is not serious. When the electrode is sufficiently impregnated with Nafion by an immersion method, the platinum utilization can reach 77.8%. Transmission electron micrographs reveal that although some thick Nafion layers and clumps are observed in the Pt/C + Nafion layer, the distribution of Nafion in the catalyst layer is basically uniform. The melted PTFE disperses in the catalyst layer very uniformly. No large PTFE clumps or wide net-like structure is observed. The reactant gas may have to diffuse evenly in the catalyst layer. (C) 1999 Elsevier Science S.A. All rights reserved.