204 resultados para Heat shields
Resumo:
HSP22 is a member of a small HSP subfamily contributing to the growth, transformation and apoptosis of the cell as well as acting as a molecular chaperone. In the present study, CfHSP22 cDNA was cloned from Chlamys farreri by the rapid amplification of cDNA ends technique. The full-length cDNA of CfHSP22 was of 1279 bp, consisting of a 5'-terminal untranslated region (5'UTR) of 122 bp, a 3'UTR of 581 bp with a canonical polyadenylation signal sequence AATAAA and a poly( A) tail, and an open reading frame of 576 bp encoding a polypeptide with a molecular mass of 22.21 kDa and a predicted isoelectric point of 9.69. There was an alpha-crystallin domain, a hallmark of the sHSP subfamily, in the C-terminus, and the deduced amino acid sequence of CfHSP22 showed high similarity to previously identified HSP22s. CfHSP22 was constitutively expressed in the haemocyte, muscle, kidney, gonad, gill, heart and hepatopancreas, and the expression level in the hepatopancreas was higher than that in the other tissues. CfHSP22 transcription was up-regulated and reached a maximal level at 12 h after the bacterial challenge, and then declined progressively to the original level at 48 h. These results suggested that CfHSP22 perhaps play a critical role in response to the bacterial challenge in haemocytes of scallop C. farreri.
Resumo:
Heat shock proteins (Hsps) are molecular chaperones that help organisms cope with stressful conditions. Here, we report on the growth rates and Hsp70 expressions in inbred and hybrid populations of abalone Haliotis discus hannai Ino. In abalone, inbred populations expressed more Hsp70 than hybrid populations at all temperatures, except at very high temperatures close to the physiological limit. At benign temperatures, there was a clear trend towards higher Hsp70 expression in inbred than hybrid populations, whereas at higher temperatures, a trend in the opposite direction was observed. The temperature of maximal Hsp70 expression (T-peak) varied with the population type. The T-peak of inbred populations (26 degrees C) was lower than that of the hybrid populations (28 degrees C). The maximal inducible Hsp70 of inbred populations was higher than that of hybrid populations. The results showed a trend towards higher expression in inbred population at a lower temperature. These results provide direct experimental evidence that hybrids can cope with the intrinsic stress even at non-stressful temperatures. The constitutive Hsp70 may therefore be used for marker-assisted selection in a breeding programme.
Resumo:
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite,as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water,heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
Resumo:
The heat capacity of nanostructured amorphous SiO2 (na-SiO2) has been measured by adiabatic calorimetric method over the temperature range 9-354 K. TG and differential scanning calorimeter (DSC) were also employed to determine the thermal stability. Glass transition temperature (T-g) for the two same grain sizes with different specific surface of naSiO(2) samples and one coarse-grained amorphous SiO2 (ca-SiO2) sample were determined to be 1377, 1397 and 1320 K, respectively. The low temperature experimental results show that there are significant heat capacity (C-P) enhancements among na-SiO2 samples and ca-SiO2. Entropy, enthalpy, Gibbs free energy and Debye temperature (theta (D)) were obtained based on the low temperature heat capacity measurement of na-SiO2. The Cp enhancements of na-SiO2 were discussed in terms of configurational and vibrational entropy. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The nanosized alumina prepared by the hydrolysis method with an average particle size of 20 nm was characterized by X-ray diffraction. The heat capacity measurements of the prepared sample were carried out using an adiabatic calorimeter in the temperature range from 78 to 370 K. Enhancement of heat capacity was observed in the nanostructured materials as the heat capacity data were compared with those of the corresponding coarse-grained materials. The enhanced heat capacity was discussed on the basis of experiments. Differential scanning calorimetry and thermogravimetry were used to determine the thermal stability of the nanostructured alumina.
Resumo:
Fe-B ultrafine amorphous alloy particles (UFAAP) were prepared by chemical reduction of Fe3+ with NaBHO4 and confirmed to be ultrafine amorphous particles by transmission electron microscopy and X-ray diffraction. The specific heat of the sample was measured by a high precision adiabatic calorimeter, and a differential scanning calorimeter was used for thermal stability analysis. A topological structure of Fe-B atoms is proposed to explain two crystallization peaks and a melting peak observed at T=600, 868 and 1645 K, respectively.
Resumo:
The low-temperature heat capacities of trifluoroacetamide were precisely determined with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 404 K. A solid-to-solid phase transition, a fusion and a phase transition from a liquid crystalline phase to fully liquid phase have been observed at the temperatures of 336.911+/-0.102, 347.622+/-0.094 and 388.896+/-0.160 K, respectively. The molar enthalpies of these phase transitions as well as the chemical purity of the substance were determined to be 5.576+/-0.004, 11.496+/-0.007, 1.340+/-0.005 kJ mol(-1) and 99.30 mol%, respectively, on the basis of the heat capacity measurements. The molar entropies of the three phase transitions were calculated to be 16.550+/-0.012, 33.071+/-0.029 and 3.447+/-0.027 J mol(-1) K-1, respectively. Further researches of the thermochemical properties for this compound have been carried out by means of TG and DSC techniques. (C) 2000 Elsevier Science B.V. All rights reserved.