188 resultados para Guandi Mountain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phylogenetic relationships among worldwide species of genus Ochotona were investigated by sequencing mitochondrial cytochrome b and ND4 genes. Parsimony and neighbor-joining analyses of the sequence data yielded congruent results that strongly indicated three major clusters: the shrub-steppe group, the northern group, and the mountain group. The subgeneric classification of Ochotona species needs to be revised because each of the two subgenera in the present classification contains species from the mountain group. To solve this taxonomic problem so that each taxon is monophyletic, i.e., represents a natural clade, Ochotona could be divided into three subgenera, one for the shrub-steppe species, a second for the northern species, and a third for the mountain species. The inferred tree suggests that the differentiation of this genus in the Palearctic Region was closely related to the gradual uplifting of the Tibet (Qinghai-Xizang) Plateau, as hypothesized previously, and that vicariance might have played a major role in the differentiation of this genus on the Plateau, On the other hand, the North American species, O. princeps, is most likely a dispersal event, which might have happened during the Pliocene through the opening of the Bering Strait. The phylogenetic relationships within the shrub-steppe group are worth noting in that instead of a monophyletic shrub-dwelling group, shrub dwellers and steppe dwellers are intermingled with each other. Moreover, the sequence divergence within the sister tars of one steppe? dweller and one shrub dweller is very low. These findings support the hypothesis that pikes have entered the steppe environment several times and that morphological similarities within steppe dwellers were due to convergent evolution. (C) 2000 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new species of Leymus, L. pendulus and L. obvipodus, are described and illustrated. These two species are endemic to Qinghai province, China, occurring at the margins of woodlands, wastelands, mountain valleys, and the bases of walls, at 2280-2400 m elevation. Leymus pendulus is unusual in its lax, long, pendent spikes. It is closely related to L. flexus, but differs from that species by pendent spikes, longer rachis internodes, and shorter glumes and lemmas. Leymus obvipodus is unique in the genus in having all spikelets pedicellate. It resembles both L. divaricatus (Drobow) Tzvelev and L. aristiglumus L. B. Cai but differs from the former by lanceolate glumes with 1 to 3 nerves, longer spike-like panicles, taller culms, and lanceolate lemmas with 5 obscure nerves and pubescent margins, and from the latter by lax, longer spike-like panicles, pedicellate spikelets with 4 to 8 florets, narrower glumes, and longer, lustrous lemmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on fine structural interpretation on seismic profiles of buried-hills in Huanghua depression, structural interpretation and balanced cross-section restoration of regional seismic profiles, drawing structural maps of main seismic interfaces, residual strata distribution of different ages in the Bohai Bay region and structural survey in the western Shandong uplifted area and the intracontinental orogeny of Yanshan mountain, the paper has studied pre-tertiary structural styles and tectonic evolution of the Bohai Bay region. There mainly develop 5 types of pre-tertiary structural style that are extension structure, compression structure, strike-slip structure, negative inversion structure and sliding structure in the Bohai Bay region. Among these 5 types of structural style, extension structure develops detachment fault and its controlling fault terrain structure and fault break slop; compression structure develops reverted fold, fault propagation fold, fault bent fold, imbricate thrust structure and triangle zone; strike-slip structure develops positive flower structure, negative flower structure, en-echelon structure and brush structure; negative reversion structure develops Indosinian compression and Yanshanian extension negative reversion structure, late Yanshanian compression and Cenozoic extension negative reversion structure; sliding structure develops interlayer sliding structure and detachment structure. According to Cangdong fault of SN direction, Zhangjiakou – Penglai fault and Qihe – Guangrao fault of NWW direction, the Bohai Bay region can be divided into 6 sub-regions in which structural direction and style is different from each other. Structural maps of bottom boundary of Cenozoic and upper Paleozoic manifest that main NNE structural direction is formed from late Yanshanian to Himalayan movement and minor NWW structural direction and a string of area more than 8000m are mainly suggest that Indosinian tectonic pattern strongly influence on Yanshanian and Himalayan movement. Residual strata distribution characteristics of middle to upper Neoproterozoic in the Bohai Bay region manifest that middle- to neo- aulacogen position may be corresponding to late Mesozoic uplifted zone. Residual Paleozoic distribution characteristics of main ENN suggest that structural alteration should be resulted from late Yanshanian to Himalayan movement while which of minor NWW structures suggest that deeper structure should restrict shallower structure. Structural patterns of main EW fold direction in the Bohai Bay region and thrust structure in eastern part are formed late Triassic in studied area. Granite magma intrusion of early to middle Jurassic mainly develops Yanshan mountain zone. Late Mesozoic rifting basins of NEE direction are widely distributed in the Bohai Bay region and granite magma intrusions are mainly distributed in Tancheng – Rongcheng zone. Mesozoic structural evolution in the Bohai Bay region is related to scissor convergent from east to west between North China plate and Yangtze plate and gradually reinforcing of the west circum-pacific tectonic tract while basin and range province of late Jurassic and early Cretaceous may be mainly related to lithospheric thinning of North China craton in late Mesozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The latest two extreme scenarios of last glacial maximum and Holocene climatic optimum marked extreme situations in China. This paper aims to reconstruct the fossil extensions and paleoclimate of deserts in eastern China during this typical period. Aeolian sequence responds the climate change by virtue of alternation of aeolian sand layer and sandy soil layer, which correspond aridity and humidity, respectively. There is a set of contrastive deposits made up of loose sand layer and overlying dark sandy soil below land surface. This developed soil and underlying deep aeolian sand respond to H.O. and late last glacial, i.e. LGM. The typical bottom sand layers of about 50 profiles of Hulun Buir Desert, Horqin Desert and Otindag Desert were dated using OSL to confirm that they did deposid in LGM. Based on the locations of these LGM sand, distrution of gobi-desert-loess and landform control, the distribution in LGM of the three deserts were reconstructed. For the block of eastern mountain, the extreme eastern boundary of Hulun Buir Desert and Otindag Desert are not just functioned by climate background. The east of Horqin Desert is plain, hence eastern boundary of this desert is maily controlled by climate. It is considered that quite a lot of aeolian sand of LGM origined from fluvial deposit by observing regional distribution of river and SEM of sand grains. The environment alternation of of LGM-H.O. is featured by extensive expanse of active dune in LGM and grassland in H.O. Combined grain-size, susceptibility, TOC, colour and SEM measurement, the OSL chronology of relatively continued profiles since LGM of the three deserts are divided into four periods: eolian sand (15-10ka)- sandy soil (10-5ka)- alternation of black sand and yellow sand- reworking of LGM sand as destroy of soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis mainly concentrates on the geochronology, prtrology, elemental geochemistry and Sr-Nd-Pb-Hf isotopic geochemistry of the volcanic rocks in north Da’Hinggan Mountain. By analyzing the data obtained in this study and data from other people, this thesis explored the age distribution, petrology and mineralogy and geochemistry characteristics of the volcanic rocks in north Da’Hinggan Mountain. Furthermore, this thesis speculated upon the source characteristics of these volcanic rocks and their implications for the tectonic evolution and crust accretion. According to the twenty Ar-Ar ages, four zircon U-Pb SHRIMP ages and two Zircon U-Pb LA-ICP-MS ages, the duration of the eruption of the Late Mesozoic volcanic rocks in north Da’Hing Mountain was about 160Ma-106Ma. Most of these volcanic rocks belong to early Cretaceous and the late Jurassic volcanic rocks are only restricted in Manzhouli. The bulk of the late Mesozoic volcanic rocks are high-K calc-alkaline rocks. Only a small portion of these volcanic rocks are shoshonites. These rocks are mainly intermediate or acid and the basic rocks usually have higher alkaline contents. Rock types are very complex in this region. These volcanic rocks have a large TiO2 variation and the Al2O3 and alkaline contents are high. From the point of mineralogy, the plagioclases in these volcanic rocks are oligoclases, andesines and labradorites, and the labradorites are more common. Most pyroxenes in these volcanic rocks are augites which belong to clinopyroxene. The source of the Late Mesozoic volcanic rocks was an enriched lithospheric mantle. When the magma en route to the surface it was contaminated by crust material slightly and had some fractional crystallization. These rocks which mainly belong to high-K calc-alkaline series were one of the results of postorogenic tectonic-magmatic activities. The upwelling in late Mesozoic supplied heat to melt the enriched lithospheric mantle which was resulted from the subduction of paleo-Asian Ocean and/or Mengol-Okhotsk ocean. These late Mesozoic volcanic rocks are also important to the upper crustal accretion of north Da’Hinggan Mountain since the late Mesozoic. These volcanics and the contemporary emplacement of granites and the basaltic underplating in combination fulfilled the crust accretion history in north Da’Hinggan Mountain in Late Mesozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of its sensitivity to the velocity discontinuity of the earth, receiver function technique has become a routine procedure used to probe interior structure of the earth. Receiver functions contain anisotropic information of the earth’s interior, however, traditional receiver function techniques such as migration imaging and waveform inversion method, which are based on isotropic media assumption, can not effectively extract the anisotropy information contained in the azimuth variation pattern. Only by using the anisotropic media, e.g. a model with symmetric axis of arbitrary orientation, computing the response, can we obtain the detailed anisotropy information hidden in the radial and transversal receiver function. Focusing on the receiver function variation pattern changing wtih different back azimuths, we introduced different kinds of symmetric systems of seismic anisotropy used often, and summarized some possible causes of anisotropy formation. We show details about how to calculate the response of a stratified anisotropy model with symmetric axis of arbitrary orientation. We also simulated receiver functions among different models and analyzed how the changing of anisotropic parameters influence the azimuth variation pattern of receiver functions. The anisotropy study by receiver function analysis was applied to Taihang Mountain Range (TMR) in North China in this thesis. The maximum entropy spectrum deconvolution technique was used to extract radial and transversal receiver functions from the waveforms of 20 portable seismic stations deployed in TMR. Considering the signal-to-noise ratio and the azimuth coverage, we got the variation pattern of receiver functions for 11 stations. After carefully analyzing the pattern of the receiver functions that we got, we obtained the reliable evidence on the existence of anisotropy in the shallow crust in TMR. Our results show that, although the thickness of the upper crustal layer is only about 1 km, the layer shows a strong anisotropy with magnitude of 8~15%; in the deeper of crust, the magnitudes of anisotropy is about 3%~5%, showing a pattern with fast-symmetric-axis. The crust anisotropy beneath TMR in North China obtained in this study also shows a significant difference in both the lateral and vertical scale, which might imply a regional anisotropy characteristic in the studied region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tien Shan is the most prominent intracontinental mountain belt on the earth. The active crustal deformation and earthquake activities provide an excellent place to study the continental geodynamics of intracontinental mountain belt. The studies of deep structures in crust and upper mantle are significantly meaningful for understanding the geological evolution and geodynamics of global intracontinental mountain belts. This dissertation focuses on the deep structures and geodynamics in the crust and upper mantle in the Tien Shan mountain belt. With the arrival time data from permanent and temporal seismic stations located in the western and central Tien Shan, using seismic travel time tomographic method, we inversed the P-wave velocity and Vp/Vs structures in the crust and uppermost mantle, the Pn and Sn velocities and Pn anisotropic structures in the uppermost mantle, and the P-wave velocity structures in the crust and mantle deep to 690km depth beneath the Tien Shan. The tomographic results suggest that the deep structures and geodynamics have significant impacts not only on the deformations and earthquake activities in the crust, but also on the mountain building, collision, and dynamics of the whole Tien Shan mountain belt. With the strongly collision and deformations in the crust, the 3-D P-wave velocity and Vp/Vs ratio structures are highly complex. The Pn and Sn velocities in the uppermost mantle beneath the Tien Shan, specially beneath the central Tien Shan, are significantly lower than the seismic wavespeed beneath geological stable regions. We infer that the hot upper mantle from the small-scale convection could elevate the temperature in the lower crust and uppermost mantle, and partially melt the materials in the lower crust. The observations of low P-wave and S-wave velocities, high Vp/Vs ratios near the Moho and the absences of earthquake activities in the lower crust are consistent with this inference. Based on teleseismic tomography images of the upper mantle beneath the Tien Shan, we infer that the lithosphere beneath the Tarim basin has subducted under the Tien Shan to depths as great as 500 km. The lithosphere beneath the Kazakh shield may have subducted to similar depths in the opposite direction, but the limited resolution of this data set makes this inference less certain. These images support the plate boundary model of converge for the Tien Shan, as the lithospheres to the north and south of the range both appear to behave as plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Badain Jaran Desert lies on the Alashan Plateau in western Inner Mongolia. Because of huge dunes, permanent lakes and on the northern fringe of the Asian summer monsoon, the Badain Jaran Desert has been drawing attentions of many experts. And they have made great progress in dune’s geomorphology, botany in desert, paleoclimate change and other study areas. We analyzed environmental isotope and ion chemistry in lakes and groundwater of the desert and southeastern area, and collected some other evidences from 14C dating, fossils and archeology. According to chemical analysis, we discuss the difference spatial character of ion chemistry and environmental isotope in lakes and groundwater of the desert and adjacent. Contrasting with ion chemistry and isotope results in other arid area, we argue origin of groundwater and lakes in the desert area, and get a preliminary understanding of desert lakes’ evolution during Holocene. Some main conclusions were drawn as follows: 1. It has a obvious difference in hydrophysical parameters between lakes and groundwater in the desert and margin. 2. The results of ion analysis show that Na+ and Cl- are dominant in most lakes of the desert. Meanwhile, Na+ 、Cl- and HCO3- are dominant in groundwater of the desert and adjacent, and alsoMg2+、Ca2+、and NO3- have more percentage than in lakes. 3. Owing to different solubilities, the conten of main ions in water varies with the content of TDS. Whereas the content of TDS is over 100 g/L, the content of SO42-、HCO3-、Mg2+and Ca2+ in lakes descend. 4. The result of isotope analyzing indicate the lakes and groundwater in southeast desert have a similar vaporing trend with the groundwater in the southeast margin of the desert. It imply there would have some kind of contact between groundwater in margin and lakes of southeast desert. 5. Contrasting with isotope results of groundwater in other arid area, it show that the groundwater in the desert and Yabulai area should be phreatic water which have a low water table. Therefore, we conclude that the groundwater in southeast part of the desert and southern margin mainly are recharged by precipitation of local abundant rainfall and groundwater of low mountain of southern area. 6. And all of these evidences, which are different from salinity, the content of CO32- and geological data, show that the bigger northern lake group and southeastern lake group in the desert have different groundwater replenishing system because a fold belt lie between of the two group lakes and obstruct them in landform. and HCO3- 7. The 14C dating results of fossil and lacustrine deposits show that there maybe have a wider range of shoreline during early and middle Holocene than today. 8. By the discovery and study of some pieces of pottery and fine stoneware, we preliminary conclude that there maybe have some certain amount of early human activities in the Badain Jaran Desert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to increase the precision of groundwater modeling. The way is use the distributed model calculate the mountain basin groundwater lateral discharge and the river runoff. With appropriate technique help, the groundwater model can couple the distributed model results. This paper’s study object is makeing the distributed hydrological model HEC-HMS coupled to the popular groundwater model Visual MODFLOW. The application example is Jiyuan basin which is a typical basin of North China. HEC-HMS can calculate the surface runoff and subsurface runoff at mountain-pass. The subsurface runoff can turn to recharge well straightly. The water level - runoff course and Trial method is used to back analyze the parameters of surface runoff to Visual MODFLOW. So the distributed hydrological model can coupled to the groundwater model. The research proved that base on couple the distributed surface water model the groundwater model’s results are notability improved. The example is Jiyuan basin where use the distributed model coupled to the groundwater model. On the base of the coupled model applied to Jiyuan basin groundwater modeling. The paper estimates the groundwater change in the study area. Then, by use the water resources integrated planning results, the article calculate the basin groundwater can be development and utilization quantity and potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constructing reservoir in mountain area, in order to avoid dangerous reservoir and ensure long-term stable reservoir storage, study on reservoir leakage has been one of research hotspots. How to accurately predict the capacity of leakage and the effect of anti-seepage after reservoir impoundment under different anti-seepage measures is one of the most difficult problems of study on reservoir leakage. The paper took Manghekou Reservoir as a case study, which is located in Jiyuan City, Henan Province, China. Based on the system analysis of the geological and hydrogeological characters in the research area, the hydrogeological conceptual model was established. Then, according to the triplex boundary nested grid model method, using three-dimensional numerical simulation technique, the 3-D groundwater seepage flow numerical model was established in the study area. Based on the model, the change of seepage flow field, the capacity of leakage and the effect of anti-seepage are predicted after Manghekou reservoir impoundment under different condition. The reasonable and reliable anti-seepage measure is selected according to the model. All these provides scientific basis for the design and assessment of anti-seepage measure for the reservoir in mountain area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geothermal resource is rich in Guanzhong Basin, but as to its cycle characteristic, there has been lack of systematic study so far. Blind exploitations lead to water-temperature reducing, the decrease of spring flow rate and so on. Based on groundwater system and hydrogeological and hydrological geochemical theory, this paper studied the recycling type of geothermal water and analyzed the resources of dissolved inorganic carbon (DIC) and sulfate. The origin of the internal geothermal water is ice and snow in Qinling Mountain and Liupan Mountain above 1400m. The precipitation and surface water entered the deep part of the basin along piedmont faults, heated and water-expansion increased. The karst groundwater comes from meteoric water of the bare carbonate rock area in the North Mountains. Geothermal-water DIC mainly came from the dissolution of carbonate rock in the deep part of Guanzhong Basin, sulfate of Xi’an depression and Lishan salient came from the dissolution of continental evaporate , and sulfate of Gushi depression and Xianli salient came from co-dissolution of continental and marine evaporate. The above results supply science basis for reasonable exploitation and sustainable utilization of the geothermal water in Guanzhong Basin.