282 resultados para FLUORESCENCE EMISSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dy3+ doped oxyfluoride silicate glass was prepared and its optical absorption, 1.3 mu m emission, and upconversion luminescence properties were studied. Furthermore, the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] intensity parameters, oscillator strengths, spontaneous transition probability, fluorescence branching ratio and radiative lifetime were calculated by Judd-Ofelt theory, while stimulated emission cross section of H-6(9/2)+F-6(11/2)-> H-6(15/2) transition was calculated by McCumber theory [Phys. Rev. A. 134, 299 (1964)]. According to the obtained Judd-Ofelt intensity parameters Omega(2)=2.69x10(-20) cm(2), Omega(4)=1.64x10(-20) cm(2), and Omega(6)=1.64x10(-20) cm(2), the radiative lifetime was calculated to be 810 mu s for 1.3 mu m emission, whose full width at half maximum and sigma(e) were 115 nm and 2.21x10(-20)cm(2), respectively. In addition, near infrared to visible upconversion luminescence was observed and evaluated. The results suggest that Dy3+ doped oxyfluoride silicate glass can be used as potential host material for developing broadband optical amplifiers and laser applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-TiO2-SiO2 glass ceramics were prepared, and the optical properties of Ni2+-doped glass ceramics were investigated. Broadband emission centered at 1320 nm was observed by 980 nm excitation. The longer wavelength luminescence compared with Ni2+-doped Li2O-Ga2O3-SiO2 glass ceramics is ascribed to the low crystal field hold by Ni2+ in MgO-Al2O3-TiO2-SiO2 glass ceramics. The change in optical signals at the telecommunication bands with or without 980 nm excitation was also measured when the seed beam passes through the bulk gain host.(C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+/Yb3+ cocloped fluorophosphate glasses were prepared and their thermal stabilities, Raman spectra, absorption spectra, and fluorescence spectra were measured. It is found that proper content of NaF or PbF2 is helpful for the increase of stability against crystallization. The variation of AI(PO3)3 or NaF content in the composition affects not the maximum phonon energy but the phonon density. The introduction of PbF2 decreases the phonon energy slightly. Intense green and red upconversion luminescence was observed for the fluorophosphate glass with low phosphate content. A glass matrix for upconversion luminescence requiring neither expensive raw material nor special atmospheric conditioned preparation is provided. Infrared luminescence around 1530 nm was researched. Fluorophosphate glasses with bandwidth properties and stimulated-emission cross sections better than tellurite, germanate and silicate glasses are obtained. Through the introduction of NaF, the bandwidth properties are decreased. Through the introduction of PbF2 the gain properties are increased. On the whole, it is difficult to obtain a material with the best gain properties and bandwidth properties simultaneously. There should be a compromise between them according to the demand. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on ultrabroad infrared (IR) luminescences covering the 1000-1700-nm wavelength region, from Bi-doped 75GeO(2) 20RO-5Al(2)O(3) 1B(2)O(3) (R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 -> 440 -> 510 nm) with the change of alkaline earth metal (Mg2+ -> Ca2+ -> Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 mu s when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorophosphate glasses with different contents of ErF3 were prepared. Due to the radiation trapping of Er, concentration dependence of the fluorescence lifetime is subject to distortion, and the stimulated-emission cross section calculated by the Fuchtbauer-Ladenburg equation is underestimated. The influence of radiation trapping on the measured fluorescence lifetime and width are investigated quantitatively. By comparing the intensity ratio of the 1556-1532 nm peak in the fluorescence spectrum with that in the stimulated-emission cross-section spectrum obtained according to the McCumber theory, the distortion ratio of fluorescence spectrum due to radiation trapping is obtained. An empirical way to quantitatively evaluate the influences of radiation trapping on fluorescence lifetime and width is proposed. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting fluorescence intensity reverse photonic phenomenon between red and green fluorescence is investigated. The dynamic range. of intensity reverse between red and green fluorescence of Er( 0.5) Yb( 3): FOV oxyfluoride nanophase vitroceramics, when excited by 378.5nm and 522.5nm light respectively, is about 4.32 x 10(2). It is calculated that the phonon- assistant energy transfer rate of the electric multi- dipole interaction of {(4)G(11/2)( Er3+) -> F-4(9/2)( Er3+), F-2(7/2)( Yb3+). F-2(5/2)( Yb3+)} energy transfer of Er( 0.5) Yb( 3): FOV is around 1.380 x 10(8) s(-1), which is much larger than the relative multiphonon nonradiative relaxation rates 3.20 x 10(5) s(-1). That energy transfer rate for general material with same rare earth ion's concentration is about 1.194 x 10(5) s(-1). These are the reason to emerge the unusual intensity reverse phenomenon in Er( 0.5) Yb( 3): FOV. (C) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

abstract {Silica glass is an attractive host matrix for the emission ions of rare earth and transition metal ions because it has small thermal expansion coefficient, strong thermal resistance, large fracture strength and good chemical durability and so on. However, a major obstacle to using it as the host matrix is a phenomenon of concentration quenching. In this paper, we introduces a novel method to restrain the concentration quenching by using a porous glass with SiO2 content > 95% (in mass) and prepare intense fluorescence high-SiO2 glasses and high-SiO2 laser glass. The porous glass with high-SiO2 content was impregnated with rare-earth and transition metal ions, and consequently sintered into a compact non-porous glass in reduction or oxidization atmospheres. Various intense fluorescence glasses with high emission yields, a vacuum ultraviolet-excited intensely luminescent glass, high silica glass containing high concentration of Er3+ ion, ultrabroad infrared luminescent Bi-doped high silica glass and Nd3+-doped silica microchip laser glass were obtained by this method. The porous glass is also favorable for co-impregnating multi-active-ions. It can bring effective energy transferring between various active ions in the glass and increases luminescent intensity and extend range of excitation spectrum. The luminescent active ions-doped high-SiO2 glasses are potential host materials for high power solid-state lasers and new transparent fluorescence materials.}

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nd-doped and Nd-Al-codoped high silica glasses were obtained by sintering porous glass impregnated with Nd3+ and Al3+ ions. The absorption, fluorescence spectra and fluorescence lifetime of Nd-doped and Nd-Al-codoped high silica glasses were measured. The intensity parameters Omega(1), ( t = 2, 4, 6), fluorescence lifetime, radiative quantum efficiency and stimulated emission cross section were calculated by Judd-Ofelt theory. The effect of aluminum codoping on the fluorescence and structural properties of Nd-doped silica glass has been discussed. By comparing the spectroscopic properties with other Nd-doped oxide glasses and commercial silicate glasses, this Nd-doped high silica glass is likely to be a promising laser material for use in high power and high repetition rate lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability, 2 μm fluorescence properties and energy transfer mechanism in Ho3+ doped fluorophosphate glass sensitized by Yb3+ and Tm3+ were investigated. The characteristic temperatures, absorption spectrum and fluorescence spectrum of the glass sample were measured. ΔT calculated from the characteristic temperatures shows that the thermal stability of fluorophosphate glass is better than fluoride glass. According to the absorption spectrum, several spectroscopic parameters of the glass sample, such as Judd-Ofelt parameters and spontaneous transition probability were calculated and compared with other glass hosts. The largest spontaneous transition probability for Ho3+:5 I7&rarr5I8 transition in fluorophosphate glass which is 78.48 s-1 indicates that fluorophosphate glass is an appropriate base glass to achieve 2 m fluorescence. From the fluorescence spectrum of the glass sample, the extremely strong 2.0 μm fluorescence intensity is observed, which is higher than the intensity of 1.8 μm fluorescence, showing that Ho3+ ions sensitized by Yb3+ and Tm3+ is efficient. Meanwhile, the absorption sections and emission sections of Yb3+, Tm3+ and Ho3+ were calculated and the pumping scheme and energy transfer mechanism among Yb3+, Tm3+ and Ho3+ are discussed. The study indicates that Yb-Tm-Ho tri-doped fluorophosphate glass is a significant sensitization glass system under 980 nm excitation for 2 μm applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence of Er(3+)/Yb(3+) co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation. Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb(3+)-Er(3+) concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H_(11/2)-->4I_(15/2), 4S_(3/2)-->4I_(15/2), and 4F_(9/2)-->4I_(15/2), respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I_(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er(3+)/Yb(3+) co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the energy transfer and frequency upconversion spectroscopic properties of Er3+-doped and Er3+/Yb3+-codoped TeO2-ZnO-Na2O-PbCl2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 4 10 nm have clearly been observed for the Er3+/Yb3+-codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the successful preparation and a detailed study on the up-conversion properties of Er3+ -doped TeO2-ZnO-PbCl2 oxylialide tellurite glasses. Three intense emissions centered at around 527, 549 and 666 nm have been clearly observed under 977 nm excitation and the involved mechanisms have been explained. The green emissions centered at 527 and 549 nin are due to the H-2(11/2 ->) I-4(15/2) and S-4(3/2) -> I-4(15/2) transitions, and the red up-conversion emission centered at 666 nm is associated with the F-4(9/2) -> I-4(15/2) transitions of Er3+ ions, respectively. The quadratic dependence of fluorescence on excitation laser power confirm that two-photons contribute to up-conversion of the green-red emissions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk-lasses have been prepared in the TeO2-ZnO-ZnCl2 systems. Their characteristic temperatures were determined and analyzed. Raman and FT-IR spectra were used to analyze the effect of ZnCl2 on the structure and spectral properties of tellurite glasses and OH- groups in this glass system. The spectroscopic properties including absorption spectra, emission cross-sections and fluorescence lifetimes of Yb3+ in TeO2-ZnO-ZnCl2 were measured and calculated. It is demonstrated that the progressive replacement less than 20 mol% of TeO2 by ZnCl2 improves the thermal stability, removes the OH- groups, turns TeO4 bipyramidal arrangement into TeO3 (and/or TeO3+1) trigonal pyramids structures and results in the decrease of the symmetry of the structure, which increases the emission cross-sections and lifetimes. But when the content of ZnCl2 up to 30 mol%, the glass system becomes more hygroscopic and introduces more OH- groups, which decrease the emission cross-sections and shorten the lifetimes. The results show that the glass system with (TeO2)-Te-69-(ZnO)-Zn-10-20ZnCl(2)-1Yb(2)O(3) is a desirable component for active laser media for high power generation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of PbF2 on Yb3+ -doped fluorophosphate glasses is studied. Results indicate that proper amount of PbF2 has absolute advantages in improving the crystallization stability of fluorophosphate glasses. T, value performs a decreasing and increasing tendency with 25 mol% PbF2 as the turning-point. And the spectroscopic properties such as absorption and emission cross section, effective fluorescence linewidth are apparently enhanced with PbF2 over 25 mol%. Lasing parameters beta, I-sat and I-min increase slightly with the addition of PbF2. Raman analysis proves that over 20 mol% PbF2, destroys the phosphate vibration groups greatly. (c) 2005 Elsevier Ltd. All rights reserved.