183 resultados para East-african Orogen
Resumo:
Temporal and spatial variability in the kinetic parameters of uptake of nitrate (NO3-), ammonium (NH4+), urea, and glycine was measured during dinoflagellate blooms in Changjiang River estuary and East China Sea coast, 2005. Karenia mikimotoi was the dominant species in the early stage of the blooms and was succeeded by Prorocentrum donghaiense. The uptake of nitrogen (N) was determined using N-15 tracer techniques. The results of comparison kinetic parameters with ambient nutrients confirmed that different N forms were preferentially taken up during different stages of the bloom. NO3- (V-max 0.044 h(-1); K-s 60.8 mu M-N) was an important N source before it was depleted. NH4+ (V-max 0.049 h(-1); K-s 2.15 mu M-N) was generally the preferred N. Between the 2 organic N sources, urea was more preferred when K. mikimotoi dominated the bloom (V-max 0.020 h(-1); K-s 1.35 mu M-N) and glycine, considered as a dominant amino acid, was more preferred when P. donghaiense dominated the bloom (V-max 0.025 h(-1); K-s 1.76 mu M-N). The change of N uptake preference by the bloom-forming algae was also related to the variation in ambient N concentrations. Published by Elsevier B.V.
Resumo:
Dilution and copepod addition incubations were conducted in the Yellow Sea (June) and the East China Sea (September) in 2003. Microzooplankton grazing rates were in the range of 0.37-0.83 d(-1) stopin most of the experiments (except at Station A3). Correspondingly, 31-50% of the chlorophyll a (Chl a) stock and 81-179% of the Chl a production was grazed by microzooplankton. At the end of 24 h copepod addition incubations, Chl a concentrations were higher in the copepod-added bottles than in the control bottles. The Chl a growth rate in the bottles showed good linear relationship with added copepod abundance. The presence of copepods could enhance the Chl a growth at a rate (Z) of 0.03-0.25 (on average 0.0691) d(-1) ind(-1) l. This study, therefore parallels many others, which show that microzooplankton are the main grazers of primary production in the sea, whereas copepods appear to have little direct role in controlling phytoplankton.
Resumo:
The distributions of heterotrophic bacterial abundance and production were investigated in the East China Sea and the Yellow Sea during the autumn of 2000 and spring of 2001. Bacterial abundance varied in the range 3.2-15.7 (averaging 5.7) x 10(5) and 2.3-13.6 (averaging 6.2) x 10(5) cells cm(-3) in the spring and autumn, respectively. During autumn, bacterial production (BP) (0.27-7.77 mg C m(-3) day(-1)) was on average 3 fold that in spring (0.001-2.04 mg C m(-3) day(-1)). Bacterial average turnover rate (ratio of bacterial production:bacterial biomass, mu=0.21 day(-1)) in autumn was 3 times as high as in spring (0.07 day(-1)). The ratio of integrated bacterial biomass to integrated phytoplankton biomass in the euphotic zone ranged from 4 to 101% (averaging 35%) in spring and 24 to 556% (averaging 121%) in autumn. The results indicate that the distributions of heterotrophic bacteria were controlled generally by temperature in spring and additionally by substrate supply in autumn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Copepod species diversity, abundance and assemblages in relation to water masses over the continental shelf of the Yellow Sea (YS) and East China Sea (ECS) were studied extensively based on the net plankton samples in autumn 2000. Multivariate analysis based on copepod assemblage resulted in recognition of five groups (Groups 1-5) corresponding to the water masses. Groups 1 and 2 delineated from inshore stations with low salinity YS Surface Water, and offshore stations with YS Cold Water in the YS. Group 3 located in the joint area of YS and ECS mainly with Mixed Water. Groups 4 and 5 in the ECS delineated two assemblages mainly from inshore and shallow stations with ECS Mixed Water in the southeastern ECS, and offshore stations along the ECS shelf edge controlled by saline Kuroshio Water. Salinity and temperature were more important in characterizing copepod assemblage of the continental shelf than chlorophyll a. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The impacts of Prorocentrum donghaiense Lu and Alexandrium catenella Balech, causative species of the large-scale HAB in the East China Sea, were studied under laboratory conditions. According to bloom densities, the effects of monoculture and mixture of the two species were examined on the egg-hatching success of Argopecten irradians Lamarck, and the population growth of Brachionus plicatilis Muller and Moina mongolica Daday. The results showed that monoculture of A. catenella had a significant inhibition on the egg hatching success of A. irradians, and the population growth of B. plicatilis and M. mongolica. The median effective densities ( EDSo) inhibiting the egg hatching success of A. irradians for 24 h and the population growth of B. plicatilis and M. mongolica for 96 h were 800, 630, and 2 400 cells/cm(3), respectively. Monoculture of P. donghaiense has no such inhibitory effect on the egg hatching success of A. irradians; P. donghaiense at lower suitable densities could sustain the population growth of B. plicatilis (1 x 10(4) similar to 3 x 10(4)cells/cm(3)) and M. mongolica (2 x 10(4) similar to 5 x 10(4) cells/cm(3)); P. doaghaiense at higher densities had significantly adverse effect on the population growth of B. plicatilis (4 x 10(4) similar to 10 x 10(4) cells/cm(3)) and M. mongolica (10 x 10(4) cells/cm(3)). When the two algae were mixed according to bloom densities, P. donghaiense at suitable densities to some extent could decrease the toxicity of A. catenella to B. plicatilis and M. mongolica. The results indicated that the large-scale HAB in the East China Sea could have adverse effect on zooplankton, and might further influence the marine ecosystem, especially when there was also Alexandrium bloom.
Resumo:
It has been long known that intense multiple Mesozoic-Cenozoic intracontinental deformations have controlled the grand scale basin-range structural evolution of the Tianshan and its adjacent basins. So it is important to study the sedimentary records of the piedmont basins along the two sides of the Tianshan synthetically for the continental geodynamic research.We carried out a magnetostratigraphy study on Cretaceous- Tertiary succession and U-Pb dating analysis of detrital zircons from the representative sandstone samples of the Mesozoic-Cenozoic deposits in Kuqa Subbasin, northern Tarim Basin, combining our previous results of multiple depositional records from different profiles including paleocurrent data, conglomerate clast, sandstone framswork grains, detrital heavy minerals and geochemistry analysis, so the multiple intracontinental tectonic processes of Tianshan and their depositional response in the Kuqa Subbasin can be revealed. The results show that the tectonic evolution of the Tianshan Orogen and the sedimentary processes of the Kuqa Subbasin can be divided into four periods: early Triassic(active period), from middle Triassic to late Jurassic(placid period), from early Cretaceous to Tertiary Paleocene(active period) and from Neogene to present (intensely active period). Simultaneously,the depositional records reveal the provenance types and tectonic attributes in different periods. As follows, the lower Triassic with a dominant age ranging from 250 to 290Ma of the Zircons, which were principally derived from alkali feldspar granites and alkaline intrusion obviously, relative to the magma activity in Permian. In middle Triassic-late Jurassic, the two samples collected from the Taliqike formation and the Qiakemake formation respectively show the age peak at 350~450Ma, which was relative to the subduction of the Tarim Block to Yili-Central Tianshan Plate. In this period the provenance of the Kuqa deposits was the Central Tianshan arc orogenic belts distantly with little height predominance.During early Cretaceous-Paleogene, two major zircons age spectra at 240~330Ma and 370~480Ma have been acquired, with some other not dominant age ranges, indicating complicated provenance types. In Neogene, the detrital zircons age dating ranges from 460 to 390 Ma primarily. What’s more, the newer chronology of the stratigraphy and the older source age, indicating that Tianshan was uplifted and exhumated further strongly. Further study on the heavy mineral and the detrital zircons age dating of the Mesozoic-Paleogene representative profiles in southern Junggar Basin, combined with the published results of the sandstone framework grains, we consider that it occurred obvious sedimentary and tectonic changes occurred in the inside of Jurassic, from late Jurassic to early Cretaceous and form early Cretaceous to late Cretaceous. On this faces, there are remarkable changes of the steady minerals and unstable minerals, the sandstone maturity and the age spectra of the detrital zircons. Compared the sedimentary records from the two sides of the Tianshan, We find that they are different obviously since Middle Jurassic. It can be concluded that Tianshan have uplifted highly enough to influence the paleo-climatic. According to the current strata division, the structural activity apparently showed a migration from north to south. That is to say, the South Tianshan uplift later than the north, especially from late Jurassic to early Cretaceous , but it was uplifted and exhumated more strongly. Furthermore, correlating the depositional records and tectonic styles in the Kuqa-South Tianshan basin-range conjugation site in the east with the west, the obvious differentiation between the west and the east from the Cretaceous especially in Tertiary along the Tianshan-Kuqa belt was revealed, probably showing earlier uplifting in the east while greater exhumation depth and sediment rates in the west. In addition, the contacting style of Kuqa subbasin to the Tianshan Orogenic belts and the basement structure are also inconsistent at different basin-range conjugation sites. It is probably controlled by a series of N-S strike adjusting belts within the Kuqa subbasin, or probably correlated with the material difference at the complicated basin-range boundary. The research on the Mesozoic-Cenozoic tectonic-depositional response in the piedmont basins along the two sides of the Tianshan shows that the basin-filling process was controlled by the intracontinental multicyclic basin-range interactions, especially affected by the intense tectonic differentiations of basin-range system, which can’t be illuminated using a single evolutionary model.
Resumo:
In this paper, the Xiaodonggou porphyry molybdenum deposit located in the Xarmoron molybdenum metallogenic belt is chose as the research area. We have analyzed the petrology of the Xiaodonggou pluton in detail and made chemical analysis of the major and trace elements, Rb-Sr and Sm-Nd isotope, common lead isotope and SHRIMP zircon U-Pb dating et al; in the other hand, we use the molybdenite to make common lead analysis and Re-Os isotopic dating. The Xiaodonggou pluton is rich in silicon, potass, zirconium, and low in REE. In addition, it has no minus Eu abnormity and show a isotopic composition high in εNd(t) and low in Sri, indicating its magma origining from the melting of juvenile thicken lower crust. In the meanwhile, it contained the features of high temperature, quick melting, quick segregation and quick emplacement. The common lead analysis of the pluton orthoclase and molybdenite show that the former transfer from orogen to mantle and the latter come from mantle, which is consistent to the molybdenite sulfur isotopic and quartz oxygen isotopic composition, demonstrating that the rock and ore-forming materials of deposit having different sources, magma from the lower crust mixing with mantle fluid. In plus, we use the physical experiments results of the water-magma reaction to explain the interaction of magma and mantle fluid. In the deep crust, these two systems uplifted in a immiscible state; when they reached low depth, the stream film between fluid-magma collapsed, and the magma was broken into small agglomerates by the fluid, then they mixed thoroughly. The SHRIMP zircon U-Pb dating gave a result of 142±2Ma and the molybdenite Re-Os dating result is 138.1±2.8Ma, corresponding to the big tectonic transition period of 140Ma, when the major stress field changing from south and north to west and east. At this time, the Da Hinggan ling ranges area was under an extensive background, underplating proceeded and mantle materials could add into the magmas forming in the lower crust. So, from the above analysis, we propose the following model for the Xiaodonggou porphyry molybdenum deposit: in the early Cretaceous period, the Da Hinggan ling ranges area was under a extensive background, the adding of mantle fluid containing ore materials into heated lower crust made it melting to produce magmas. Following more mantle fluid got into the magma room and urged the magma to segregate from the source quickly. The fluid and magma uplifted together, when they arrived at shallow depth, the fluid-magma became unstable and the latter was broken into many small agglomerates with fluid connecting them in the interspaces. Because of the H+, K+ and various elements existing in the fluid, it would reacted with the magma and the rock through alteration and ore minerals crystallized out, forming the Xiaodonggou porphyry deposit with disseminated mineralization phenomenon.
Resumo:
Since the discovery of coesite-bearing eclogites in Dabie and Sulu region over ten years ago, the Dabie collisional orogen has been the "hot-spot" across the world. While many great progresses have been made for the last decade in the researches on the Dabie and Sulu UHP metamorphic rocks in the following fields, such as, petrology, mineralogy, isotope chronology, and geochemistry, the study of the structural geology on the Dabie orogen is still in great need. Thrust and nappe tectonics commonly developed in any collisional orogenic belt during the syncollisional process of the orogen. It is the same as the Dabic collisional orogen is concerned. The paper put much stress on the thrust and nappe tectonics in the Dabic orogenic belt, which have been seldom systematically studied before. The geometric features including the division and the spatial distribution of various thrust and nappe tectonics in the Dabie orogen have been first studied, which is followed by the detailed studies on their kinematic characteristics in different scales varying from regional tectonics to microtectonics. In the thesis, new deformation ages have been obtained by the isotopic methods of ~(40)Ar-~(39)Ar, Sm-Nd and Rb-Sr minerals-whole rock isochrons on the mylonites formed in three ductile shear zones which bounded three different major nappes in the Dabie collisional orogenic belt. And the petrological, geochemical characteristics of some metamorphic rocks as well as the geotectonics of their protoliths, which have also deformed in the ductile shear zone, are analyzed and discussed. In the paper, twelve nappes in the Dabie orogen are first divided, which are bounded by various important NWW or NW-strike faults and three NNE-strike faults. They are Shangcheng Nappe, Huoshan Nappe, Yuexi Nappe, Yingshanjian-Hengzhong Nappe, Huangzhen Nappe, Xishui-Huangmei Nappe, Zhoudang Nappe, Suhe-Huwan Nappe, Xinxian Nappe, Hong'an Nappe, Mulan Nappe and Hhuangpi-Susong Nappe. In the Dabie orogen, three types of thrust and nappe tectonics belonging to two stages have been confirmed. They are: (1) early stage ductile thrust -nappe tectonics which movement direction was top-to-the-south; (2) late stage brittle to ductile-brittle thrust-nappe tectonics which are characterized by double-vergence movement, including top-to-the-north and top-to-the-south; (3) the third type also belongs to the late stage which also characterized by double-vergence movement, including top-to-the-east and top-to-the-west, and related to the strike-slip movement. The deformation ages of both Wuhe-Shuihou ductile shear zone and Taihu-Mamiao ductile shear zone have been dated by ~(40)Ar-~(39)Ar method. ~(40)Ar/~(39)Ar plateau ages of biotite and mica from the mylonites in these two shear zones are 219.57Ma and 229.12Ma. The plateau ages record the time of ductile deformation of the ductile shear zones, which made the concerned minerals of the mylonites exhume from amphibolite facies to the middle-upper crustal conditions by the early stage ductile thrust-nappe tectonics. The mineral isochons of Sm-Nd and Rb-Sr dating on the same mylonite sample of the metamafic rocks are 156.5Ma and 124.56Ma respectively. The two isochron ages suggest that the mylonitic rock strongly deformed in the amphilbolite facies at 156Ma and then exhumed to the upper crustal green schist condition at 124Ma with the activities of the Quiliping-Changlinggang ductile shear zone which bounded to the southen edge of Xinxian Nappe. Studies of the petrological and geochemical characteristics of some meta-mafic rocks and discussion on the geotectonics of their protoliths indicate that their protoliths were developped in an island arc or back-arc basin or active continental margin in which calc-alkline basalts formed. This means that arc-accretion orogeny had evolved in the margins of North china plate and/or Yangtze plate before these two plates directly collided with each other during the evolution process of Dabie orogen. Three-stage evolution of the thrust-nappe tectonics in Dabie collisional orogen has been induced based on the above-mentioned studies and previous work of others. And a possible 3-stage exhumation model (Thrust-Positive Flower Structure Model) has also been proposed.
Resumo:
The Dabie Mountains is a collisional orogenic belt between the North China and Yantze Continental plates. It is the eastern elongation of the Tongbai and Qingling orogen, and is truncated at its east end by the Tan-Lu fault. Jadeite-quartzite belt occurs in the eastern margin of UHPMB from the Dabie Mountains. Geochemical features indicate that the protoliths of the jadeite-quartzite and associated eclogite to be supracrustal rocks. The occurrence of micro-inclusions of coesite in jadeite and garnet confirmed that the continental crust can be subducted to great depth (8 0-100km) and then exhumed rapidly with its UHP mineral signature fairly preserved. Therefore, study of UHP jadeite-quartzite provides important information on subduction of continental crustal rocks and their exhumation histories, as well as the dynamics of plate tectonic processes at convergent margins. The purpose of this paper is to investigate the presence of hydrous component in the jadeite-quartzite belt, significant natural variations in the hydrous component content of UHP minerals and to discuss the role of water in petrology, geochemistry and micro-tectonic. On the basis of our previous studies, some new geological evidences have been found in the jadeite-quartzite belt by researches on petrography, mineralogy, micro-tectonic, hydrous component content of UHP minerals and combined with the study on rheology of materials using microprob, ER, TEM. By research and analysis of these phenomenona, the results obtained are as follows: 1. The existence of fluid during ultra-high pressure metamorphic process. Jadeites, omphacite, garnet, rutile, coesite and quartz from the jadeite-quartzite belt have been investigated by Fourier transform infrared spectrometer and TEM. Results show that all of these minerals contain trace amount of water which occur as hydroxyl and free-water in these minerals. The two-type hydrous components in UHP minerals are indicated stable in the mantle-depth. The results demonstrated that these ultra-high pressure metamorphic minerals, which were derived from continental crust protoliths, they could bring water into the mantle depth during the ultra-high pressure metamorphism. The clusters of water molecules within garnet are very important evidence of the existence of fluid during ultra-high pressure metamorphic process. It indicated that the metamorphic system was not "dry"during the ultra-high pressure stage. 2.The distribution of hydrous component in UHP minerals of jadeite-quartzite. The systematic distribution of hydrous components in UHP minerals are a strong indication that water in these minerals, are controlled by some factors and that the observed variations are not of a random nature. The distribution and concentration of hydrous component is not only correlated with composition of minerals, but also a function of geological environment. Therefore, the hydrous component in the minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transported water molecules with decreasing pressure during their exhumation. And these water molecules can not only promote the deformation of jadeite through hydrolytic weakening, but also may be the part of the retrograde metamorphic fluid. 3.The role of water in the deformed UHP minerals. The jadeite, omphacite, garnet are strong elongated deformation in the jadeite-quartzite from the Dabie Mountains. They are (1) they are developed strong plastic deformation; (2) developed dislocation loop, dislocation wall; (3) the existence of clusters of water molecular in the garnet; and (4) the evolution of micero-tectonic from clusters of water molecular-dislocation loop in omphacite. That indicated that the water weakening controlled the mechanism of deformed minerals. Because the data presented here are not only the existence of clusters of water molecular in the garnet, but also developed strong elongation, high density of dislocation and high aspect ratios, adding microprobe data demonstrate the studied garnet crystals no compositional zoning. Therefore, this indicates that the diffusion process of the grain boundary mobility did not take place in these garnets. On the basis of above features, we consider that it can only be explained by plastic deformation of the garnets. The clusters of water molecules present in garnet was directly associated with mechanical weakening and inducing in plastic deformation of garnet by glissile dislocations. Investigate of LPO, strain analysis, TEM indicated that these clinopyroxenes developed strong elongation, high aspect ratios, and developed dislocation loop, dislocation wall and free dislocations. These indicated that the deformation mechanism of the clinopyroxenes plastically from the Dabie Mountains is dominant dislocation creep under the condition of the UHP metamorphic conditions. There are some bubbles with dislocation loops attached to them in the omphacite crystal. The bubbles attached to the dislocation loops sometimes form a string of bubble beads and some loops are often connected to one another via a common bubble. The water present in omphacite was directly associated with hydrolitic weakening and inducing in plastic deformation of omphacite by dislocations. The role of water in brittle deformation. Using microscopy, deformation has been identified as plastic deformation and brittle deformation in UHP minerals from the Dabie Mountains. The study of micro-tectonic on these minerals shows that the brittle deformation within UHP minerals was related to local stresses. The brittle deformation is interpreted as being caused by an interaction of high fluid pressure, volume changes. The hydroxyl within UHP minerals transported water molecules with decreasing pressure due to their exhumation. However, under eclogite facies conditions, the litho-static pressure is extreme, but a high fluid pressure will reduce the effective stress and make brittle deformation possible. The role of water in prograde metamorphism. Geochemical research on jadeite-quartzite and associated eclogite show that the protoliths of these rocks are supracrustal rocks. With increasing of temperature and pressure, the chlorite, biotite, muscovite was dehydrous reaction and released hydrous component during the subduction of continental lithosphere. The supracrustal rocks were transformed UHP rocks and formed UHP facies assemblage promotely by water introduction, and was retained in UHP minerals as hydrous component. The water within UHP minerals may be one of the retrograde metamorphic fluids. Petrological research on UHP rocks of jadeite-quartzite belt shows that there was existence of local fluids during early retrograde metamorphism. That are: (1) coronal textures and symplectite around relict UHP minerls crystals formed from UHP minerls by hydration reactions; (2) coronal textures of albite around ruitle; and (3) micro-fractures in jadeite or garnet were filled symplectite of Amp + PI + Mt. That indicated that the reactions of early retrograde metamorphism dependent on fluid introduction. These fluids not only promoted retrograde reaction of UHP minerals, but also were facilitate to diffuse intergranular and promote growth in minerals. Therefore, the hydrous component in the UHP minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transport water molecules with decreasing pressure and may take part in the retrograde metamorphic fluid during their exhumation. 7. The role of water in geochemistry of UHP jadeite-quartzite. Geochemical research show that there are major, trace and rare earth element geochemical variations in the jadeite-quartzite from the Changpu district of Dabie Mountains, during retrograde metamorphic processes from the jadeite-quartzite--gneiss. The elements such as SiO_2、FeO、Ba、Zr、Ga、La、Ce、PTN Nd% Sm and Eu increase gradually from the jadeite-quartzite to retrograded jadeite-quartzite and to gneiss, whilst TiO_2. Na_2CK Fe2O_3、Rb、Y、Nb、Gd、Tb、Dy、Ho、Er、Tm、Yb decrease gradually. And its fO_2 keep nearly unchanged during early retrograde metamorphism, but decreased obviously during later retrograde metamorphism. These indicate that such changes are not only controlled by element transformation between mineralogical phases, but also closely relative to fluid-rock interaction in the decompression retrograde metamorphic processes.
Resumo:
The platinum-group elements (PGE), including Os, Ir, Ru, Rh, Pt and Pd, axe strongly siderophile and chalcophile. On the basis of melting temperature, the PGE may be divided into two groups: the Ir group (IPGE, >2000°C) consisting of Os, Ir and Ru, and the Pd group (PPGE, <20GO°C) consisting of Rh, Pt and Pd. Because of their unique geochemical properties, PGE provide critical information on global-scale differentiation processes, such as core-mantle segregation, late accretionary history, and core-mantle exchange. In addition, they may be used to identify magma source regions and unravel complex petrogenetic processes including partial melting, melt percolation and metasomatism in the mantle, magma mixing and crustal contamination in magma chambers and melt crystallization.Compared with other rocks, (ultra)mafic rocks have lower REE content but higher PGE content, so PGE have advantages in studying the petrogeneses and evolution of them. In this study, we selected (ultra)mafic rocks collected in Dabie Orogen and volcanic rocks from Fuxin Region. Based on the distribution and behaviour of platinum-group elements, combined with other elements, we speculate the magma evolution and source mantle of these (ultra)mafic rocks and volcanic rocks.Many (ultra)mafic rocks are widely distributed in Dabie Region. According to their deformation and metamorphism, we classed them into three types. One is intrusive (ultra)mafic rocks, which are generally undeformed and show no or little sign of metamorphism, such as (ultra)mafic intrusions in Shacun, zhujiapu, Banzhufan, qingshan, Xiaohekou, Jiaoziyan, Renjiawan and Daoshichong. The other one is ultrahigh pressure metamorphic (ultra)mafic rocks, some of them appeared as eelogites, such as complex in Bixiling and adjacent Maowu. Another one is intense deformed and metamorphic, termed as tectonic slice, alpine-type (ultra)mafic rocks. The most representative is Raobazhai and Dahuapin. However, there are many controversies about the formation of those (ultra)mafic rocks. Here, we select typical rocks of the three types. The PGE were determined by inductively coupled plasma mass spectrometry (ICP-MS) ater NiS fire-assay and tellurium co-precipitation.The PGE tracing shows that three components are needed in the source of the cretaceous (uitra)mafic intrusions. They could be old enriched sub-continental lithospheric mantle, lower crust and depleted asthenospheric mantle. The pattern of PGE also shows the primitive magma of these intrusions underwent S saturation. According to palladium, we can conclude that the mantle enrich in PGE. Distribution of PGE in Bixiiing and Maowu (ultra)mafic rocks display they are products of magmas fractional crystallization. The (ultra)mafic rocks in Bixiiing and Maowu are controlled by various magmatic processes and the source mantle is depleted in PGE. Of interest is that the mantle produced UHP (ultra)mafic rocks are PGE-depleted, whereas the mantle of cretaceous (ultra)mafic intrusions are enrich in PGE. This couldindicate that the mantle change from PGE-enriched to PGE-depleted during120-OOMa, which in accord with the time of tectonic system change in the East China. At the same time, (ultra)mafic intrusions in cretaceous took information of deep mantle, which means the processes in deep mantle arose structural movement in the crust The character of PGE in alpine-type (ultra)mafic rocks declared that the rocks had experienced two types of metasomatic processes - hydrous melt derived from slab and silicate melt. In addition, we analyze the platinum-group elements in volcanic rocks on the northern margin of the North China Craton, Fuxin. The volcanic rocks characterized by negative anomalies of platinum. This indicates that platinum alloys, which may host some Pt resided in the mantle. The PGE patterns also show that Jianguo alkali basalts derived from asthenospheric mantle source, but wulahada high-Mg andesites derived from lithospheric mantle.