221 resultados para Cerium oxide
Resumo:
Mg-20Zn-8Al-xCe(x=0-2 wt.%) alloys were prepared by metal mould casting method, the effects of Ce on the microstructure and mechanical properties of the alloys were investigated. The results showed that the dendrite as well as gram size were refined by the addition of Ce, and the best refinement was obtained in 1.39% Ce containing alloy.
Resumo:
Cu(OH)(2) nanowires have been synthesized by anodic oxidation of copper through a simple electrolysis process employing ionic liquid as an electrolyte. Controlling the electrochemical conditions can qualitatively modulate the lengths, amounts, and shapes of Cu(OH)(2) nanostructures. A rational mechanism based on coordination self-assembly and oriented attachment is proposed for the selective formation of the polycrystalline Cu(OH)(2) nanowires. In addition, the FeOOH nanoribbons, Ni(OH)(2) nanosheets, and ZnO nanospheres were also synthesized by this route, indicative of the universality of the electrochemical route presented herein. The morphologies and structures of the synthesized nanostructures have been characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD). Fourier transform infrared spectra (FT-IR), and thermogravimetric (TG). (C) 2007 Elsevier Masson SAS. All rights reserved
Resumo:
Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.
Resumo:
Novel star-like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3-amino-1,2-propanediol (APD) with feed molar ratio of 1:2. H-1, C-13, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers
Resumo:
Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) coatings were prepared under different conditions by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies, cyclic oxidation behavior of these coatings were studied. Elemental analysis indicates that the coating composition has partially deviated from the stoichiometry of the ingot, and the existence of excess La2O3 is also observed.
Resumo:
A facile magnetic control system was designed in bioelectrocatalytic process based on functionalized iron oxide particles. The iron oxide particles were modified with glucose oxidase, and ferrocene dicarboxylic acid was used as electron transfer mediator. Functionalized iron oxide particles can assemble along the direction of applied magnetic field, and the directional dependence of the assembled iron oxide particles can be utilized for device purposes. We report here how such functionalized magnetic particles are used to modulate the bioelectrocatalytic signal by changing the orientation of the applied magnetic field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.
Resumo:
Air-stable n-type field effect transistors were fabricated with an axially oxygen substituted metal phthalocyanine, tin (IV) phthalocyanine oxide (SnOPc), as active layers. The SnOPc thin films showed highly crystallinity on modified dielectric layer, and the electron field-effect mobility reached 0.44 cm(2) V-1 s(-1). After storage in air for 32 days, the mobility and on/off ratio did not obviously change. The above results also indicated that it is an effective approach of seeking n-type semiconductor by incorporating the appropriate metal connected with electron-withdrawing group into pi-pi conjugated system.
Resumo:
The syntheses of several dialkyl complexes based on rare-earth metal were described. Three beta-diimine compounds with varying N-aryl substituents (HL1 = (2-CH3O(C6H4))N=C(CH3)CH=C(CH3)NH(2-CH3O(C6H4)), HL2 = (2,4,6-(CH3)(3) (C6H2))N=C(CH3)CH=C(CH3)NH(2,4,6-(CH3)(3)(C6H2)), HL3 = PhN=C(CH3)CH(CH3) NHPh) were treated with Ln(CH2SiMe3)(3)(THF)(2) to give dialkyl complexes L(1)Ln (CH2SiMe3)(2) (Ln = Y (1a), Lu (1b), Sc (1c)), L(2)Ln(CH2SiMe3)(2)(THF) (Ln = Y (2a), Lu (2b)), and (LLu)-Lu-3(CH2SiMe3)(2)(THF) (3). All these complexes were applied to the copolymerization of cyclohexene oxide (CHO) and carbon dioxide as single-component catalysts.
Resumo:
It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N '-di(naphthalene-1-yl)-N,N '-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).
Resumo:
Self-assembled monolayers (SAMs) of a series of p-substituted benzoyl chlorides were formed on indium tin oxide as the cathode for the fabrication of inverted bottom-emitting organic light-emitting diodes (IBOLEDs). The studies on the efficiency of electron injection and device performances showed that the direct tunneling of electron and the formation of dipole associated with the monolayer-forming molecule lead to significant enhancement in electron injection. Consequently, the device efficiency is greatly improved.
Resumo:
Oxide ceramics with high sintering-resistance above 1473 K have very important applications in thermal barrier coatings (TBCs), catalytic combustion and high-temperature structural materials. Lanthanum zirconate (La2Zr2O7, LZ) is an attractive TBC material which has higher sintering-resistance than yttria stabilized zirconia (YSZ), and this property could be further improved by the proper addition of ceria.
Resumo:
A series of novel titanium(IV) complexes combining a phosphine oxide-bridged bisphenolato ligand TiCl2{2,2'-O=P-R-3 (4-R-2-6-R-1-C6H2O)(2)}(THF) (6a: R-1 = tBu, R-2 - H, R-3 Ph; 6b: R-1 - Ph, R-2 = H, R-3 = Ph; 6c: R-1 = R-2 = tBu, R-3 = Ph; 6d: R-1 = R-2 cumyl, R-3 = Ph; 6e: R-1 = tBu, R-2 = H, R-3 = PhF5) were prepared by the reaction of corresponding bisphenolato ligands with TiCl4 in THF. X-ray analysis reveals that complex 6a adopts distorted octahedral geometry around the titanium center. These catalysts were performed for ethylene polymerization in the presence of modified methyaluminoxane (MMAO).
Resumo:
Various organometallic compounds (diphenylzinc, dibenzylzinc, dicyclohexylzinc, bis( pentafluorophenyl) zinc, diethylzinc, di(n-butyl) zinc, triethylaluminum) were used to form Y(CCl3COO)(3)-organometallic compound-glycerol catalyst for the copolymerization of carbon dioxide and propylene oxide. It was found that Y(CCl3COO)(3)-diphenylzinc-glycerol catalyst showed the highest catalytic activity, at optimum conditions the yield could be as high as 478.8 ( g polymer/mol Zn h).
Resumo:
Chloro( 5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide ( Et4NBr) in combination with bulky Lewis acid was used for the copolymerization of CO2 and cyclohexene oxide ( CHO). Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands, like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity, the corresponding turnover frequency reached 44.9 h(-1) in 9 h, which was 23.8% higher than that from ( TPP)AlCl/Et4NBr binary catalyst. The resulting polycarbonate has carbonate linkage over 93% with number average molecular weight of ( 4.5-6.5) x 10(3) and polydispersity index below 1.10.