230 resultados para CHA-252
Resumo:
Stacked organic light-emitting devices (OLEDs) based on a europium complex Eu(TTA)(3) (Tmphen) (TTA = thenoyltrifluoroacetone,Tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) were fabricated. In this stacked OLEDs, Li:BCP/V2O5 was used the intermediate charge generation layer sandwiched between two identical emissive units consisting of TPD/CBP:DCJTB:Eu(TTA)(3)(Tmphen)/BCP. As expected, the brightness and electroluminescent (EL) current efficiency were approximately enhanced by double times that of conventional single-unit devices. The stacked OLEDs showed the maximum luminance up to 3000 cd/m(2) at a current density of 190 mA/cm(2) and a current efficiency of 14.5 cd/A at a current density of 0.08 mA/cm(2). At the brightness of 100 cd/m(2), the current efficiency reached 10 cd/A at a current density of 1.6 mA/cm2.
Resumo:
A super-hydrophobic surface was obtained on a three-dimensional (313) polyvinylidene fluoride (PVDF) macroporous film. The porous films were fabricated through self-assembled silica colloidal templates. The apparent water contact angle of the surface can be tuned from 106 degrees to 153 degrees through altering the sintering temperature and the diameter of the colloidal templates. A composite structure of micro-cavities and nanoholes on the PVDF surface was responsible for the super-hydrophobicity. The wettability of the porous surfaces was described by the use of the Cassie-Baxter model and Wenzel's equation.
Resumo:
Polymer concentration and shear and stretch field effects on the surface morphology evolution of three different kinds of polymers (polystyrene (PS), polybutadiene (PB) and polystyrene-b-polybutadiene-b-polystyrene (SBS)) during the spin-coating were investigated by means of atomic force microscopy (AFM). For PS and SBS, continuous film, net-like structure and particle structure were observed at different concentrations. For PB, net-like structures were not observed and continuous films and radial array of droplets emerged. Moreover, we compared surface morphology transitions on different substrate locations from the center to the edge. For PS, net-like structure, broken net-like structure and irregular array of particles were observed. For SBS, net-like structure, periodically orientated string-like structure and broken-line structure appeared. But for PB, flower-like holes in the continuous film, distorted stream-like structure and irregular distributions of droplets emerged. These different transitions of surface morphologies were discussed in terms of individual material property.
Resumo:
Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq(3)/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.
Resumo:
An efficient cathode NaCl/Ca/Al used to improve the performance of organic light-emitting devices (OLEDs) was reported. Standard NM-bis(1-naphthyl)-NAP-diphenyl-1,1' biphenyl 4,4'-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq(3)) devices with NaCl/Ca/Al cathode showed dramatically enhanced electroluminescent (EL) efficiency. A power efficiency of 4.6 lm/W was obtained for OLEDs with 2 nm of NaCl and 10 nm of Ca, which is much higher than 2.0 lm/W, 3.1 lm/W, 2.1 lm/ W and 3.6 lm/W in devices using, respectively, the LiF (1 nm)/Al, LiF (1 nm)/Ca (10 nm)/Al, Ca (10 nm)/Al and NaCl (2 nm)/ Al cathodes. The investigation of the electron injection in electron-only devices indicates that the utilization of the NaCl/Ca/Al cathode substantially enhances the electron injection current, which in case of OLEDs leads to the improvement of the brightness and efficiency.
Resumo:
In this paper, we found that boron deposited on the surface of support when sodium borohydride used as reducing agent during the preparation of Pt/C catalyst. The deposition of boron markedly reduces particle size of Pt, raises electrochemical active surface (EAS) area of catalyst and electrochemical activity for hydrogen evolution or oxygen reduction reaction (ORR) compared with which prepared using other reducing agents (hydrogen and formaldehyde).
Resumo:
Surface replacement reaction of thiol-derivatized, single-stranded oligonucleotide (HS-ssDNA) by mercaptohexanol (MCH) is investigated in order to reduce surface density of the HS-ssDNA adsorbed to Au(111) surface. Cyclic voltammograms (CVs) and scanning tunneling microscopy (STM) are employed to assess the composition and state of these mixed monolayers. It is found that each CV of mixed self-assembled monolayers (SAMs) only shows a single reductive desorption peak, which suggests that the resulted, mixed SAMs do not form discernable phase-separated domains. The peak potential gradually shifts to negative direction and the peak area increases step by step over the whole replacement process. By analyzing these peak areas, it is concluded that two MCH molecules will replace one HS-ssDNA molecule and relative coverage can also be estimated as a function of exposing time. The possible mechanism of the replacement reaction is also proposed. The DNA surface density exponentially reduces with the exposing time increasing, in other words, the replacement reaction is very fast in the first several hours and then gradually slows down. Moreover, the morphological change in the process is also followed by STM.
Resumo:
Silver nanoparticles ring was successfully fabricated by electrostatic assembling 4-aminothiophenol (4-ATP) capped silver nanoparticles on predefined extended circular plasmid pBR322 DNA. The silver nanoparticles ring which was about 1.5 mu m in length, and about 2.2 nm in height can be obtained by adjusting the reaction time. The normal Raman scattering spectra reveal that the 4-ATP has contacted with the silver nanoparticles by forming a strong Ag-S bond. The AFM data show that the assembly of 4-ATP capped silver nanoparticles on DNA is ordered.
Resumo:
In this paper, a method for highly ordered assembly of cuprous oxide (Cu2O) nanoparticles (NPs) by DNA templates was reported. Cetyltrimethylammonium bromide (CTAB)-capped Cu2O NPs were adsorbed onto well-aligned lambda-DNA chains to form necklace-like one-dimensional (1D) nanostructures. UV-vis, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanostructure. The Cu2O nanostructures fabricated with the method are both highly ordered and quite straight.
Resumo:
Dipolar fluorescent compounds containing electron-accepting pyrazine-2,3-dicarbonitrile and electron-donating arylamine moiety have been designed and synthesized. The optical and electrochemical properties of these compounds can be adjusted by changing pi-bridge length and the donor (D) strength. Organic light-emitting devices based on these compounds are fabricated. Saturated red emission of (0.67, 0.33) and the external quantum efficiency as high as 1.41% have been demonstrated for one of these compounds.
Resumo:
IntroductionConventional polymers such as polyethyleneand polypropylene persistfor many years after landdisposal.Furthermore,plastics are often soiled byfood and other biological substances,making phys-ical recycling of those materials impractical andgenerally undesirable. In contrast,biodegradablepolymers disposed in bioactive environment are de-graded by the enzymatic action of microorganismssuch as bacteria,fungi,and algae.The worldwideconsumption of biodegradable polymers increasedfrom1.4×107kg in ...
Resumo:
本文采用淬火的方法合成了一种新畸变结构和BaTb<,2>Mn<,2>O<,7>化合物,并用Rietveld方法对其结构进行了精化计算,发现新结构具有单斜的A2/m对称性.
Resumo:
中国科学院山西煤炭化学研究所
Resumo:
Humid solid state reaction at room temperature was utilized for the first time to coat Y2O3 : Eu3+ particles with alumina. The particles were studied with an X-ray photoelectron spectrometer (XPS), a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS). XPS results show that the yttrium and europium contents are decreased and that the aluminum content is the highest except for that of oxygen after coating. SEM and EDS results show that particles are coated with a thin shell of alumina.