341 resultados para CATALYTIC AMOUNTS
Resumo:
The structure and stability of magnesia-supported copper salts of molybdovanadophosphoric acid (Cu2PMo11VO40) were characterized by different techniques. The catalyst was prepared in ethanol by impregnation because this solvent does not hurt texture of the water-sensitive MgO and Cu2PMo11VO40. The Keggin-type structure compound may be degraded partially to form oligomerized polyoxometalate when supported on MgO. However, the oligomers can rebuild as the Keggin structure again after thermal treatment in air or during the reaction. Meanwhile, the V atoms migrate out of the Keggin structure to form a lacunary structure, as observed by Fourier transform IR spectroscopy. Moreover, the presence of Cu2+ as a countercation showed an affirmative influence on the migration of V atoms, and the active sites derived from the lacunary species generated after release of V from the Keggin anion. The electron paramagnetic resonance data imply that V5+ autoreduces to V4+ in the fresh catalyst, and during the catalytic reaction a large number of V4+ ions are produced, which enhance the formation of O2- vacancies around the metal atoms. These oxygen vacancies may also improve the reoxidation function of the catalyst. This behavior is correlated to higher catalytic properties of this catalyst. The oxidative dehydrogenation of hexanol to hexanal was studied over this catalyst.
Resumo:
The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)(2)nacnac]YbCl(mu-Cl)(3)Yb[(DIPPh)(2)nacnac](THF)} (1) [(DIPPh)(2)nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)(2)nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPr2i in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)(2)nacnac]Yb(NPr2i)(mu-Cl)(2)Li(THF)(2) (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)(2)nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)(2)nacnac}Yb(NPr2i)(mu-Cl)](2) (5). The reaction medium has a significant effect on the outcome of the reaction.
Resumo:
A series of chromium(III) complexes LCrCl3 (4a-c) bearing chelating 2,2'-iminodiphenyisulfide ligands [L = (2-ArMeC=NAr)(2)S] was synthesized in good yields from the corresponding ligands and CrCl3.(THF). Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display moderate activities towards ethylene polymerization, and produce highly linear polyethylenes with broad molecular weight distribution. Polymer yields, catalyst activities and the molecular weights, as well as the molecular weight distributions of the polymers can be controlled over a wide range by the variation of the structures of the chromium(III) complexes and the polymerization parameters, such as Al/Cr molar ratio, reaction temperature and ethylene pressure.
Resumo:
The catalytic properties of silver nanoparticles supported on silica and the relation between catalytic activity of silver particles and the support (silica) size are investigated in the present article. The silver nanoparticles with 4 nm diameters were synthesized and were attached to silica spheres with sizes of 40, 78, 105 nm, respectively. The reduction of Rhodamine 6G (R6G) by NaBH4 was designed by using the SiO2/Ag core-shell nanocomposites as catalysts. The experimental results demonstrated that the catalytic activity of silica/silver nanoparticles depends on not only the concentration of catalysts (silver) but also the support silica size. Silver particles supported on small SiO2 spheres (similar to 40 nm) show high catalytic activity. Moreover, by making a comparison between the UV-vis spectra of the catalyst before and after the catalytic reaction, we found that the position of surface plasma resonance (SPR) peak of Ag nanoparticles changes little. The above results suggested that the size and morphology of silver particles were probably kept unchanged after the reduction of R6G and also implied that the catalytic activity of silver particles was hardly lost during the catalytic reaction.
Resumo:
A novel mimic TeHA was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of infrared spectroscopy and nuclear magnetic resonance spectroscopy, showing that the target Te is located at -CH2OH of the N-acetyl-D-glucosamine of HA. The activity of TeHA is 163.6 U/mu mol according to Wilson's method. In contrast to other mimics, TeHA displays a high activity. Moreover, TeHA can use many hydroperoxides as substrates, such as H2O2, cumenyl hydroperoxide, and tert-butyl hydroperoxide, and cumenyl hydroperoxide is the optimal substrate. A ping-pong mechanism was deduced for the reduction reactions catalyzed by TeHA according to the steady-state kinetic studies.
Resumo:
The stability constants and species distributions of complexes of two lanthanide ions, Eu (III) and Tb(III), with a macrocyclic ligand, 3,6, 9, 17 20, 23-hexaazo-29, 30-dihydroxy-13, 27-dimethyl-tricylco-[23,3,1,1(11,15)] triaconta-1 (28) 11,13,15 (30), 25 26-hexane (BDBPH), in 1: 1 and 2: 1 system, were determined potentiometrically in 50% ethanol solution, at 35.0 degrees C and I = 0.100 mol/L (KCl). The two metal ions could form deprotonated mono- or dinuclear complexes with BDBPH with high stability after the three protons of the ligand completely neutralized. At higher pH values, Eu(M) could not form hydroxo complexes with BDBPH, while Tb(III) could form hydroxo complexes in the types of M2L(OH) M2L(OH)(2) and M2L (OH)(2). The kinetic study on the hydrolysis reaction of his (4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system (2:1) was carried out in aqueous solution (pH 7.0 similar to 10.0) at 35 degrees C with I = 0.1000 mol/L (KCl). The second-order rate constant k(BNPP) (2.3 x 10(-3) (mol/L)(-1)center dot s(-1)) was determined. The dinuclear monohydroxo species, L-Tb-2-OH, is kinetically active species.