205 resultados para AMMONIA CONCENTRATION
Resumo:
This article describes a quantitative study of the diffusion rate of ferrocene(Fc) dissolved in ploy(ethylene glycol)(PEG) medium containing MClO(4)(M = Li+, Na+, Bu(4)N(+), Hx(4)N(+)). The apparent diffusion coefficient D-app and the active concentration c(a) of Fc were simultaneously measured by using non-steady-state chronoamperometry. The D-app and c(a) of Fc have been estimated in PEG containing different concentrations and sizes of supporting electrolyte, and the dependence of D-app on ferrocene concentrations has been observed. The values of D-app decrease with increasing concentrations of Fc, increasing concentrations of LiClO4 or the ratio (O:Li) and also with 4 decreasing cation radius of the electrolyte. The temperature dependencies conform to a simple free volume model. The concentration and size of the counterion dependencies of the diffusion rate are similar to the behavior of their dependencies of ionic conductivity in polyelectrolyte.
Resumo:
It has been found that the interaction between the two transition metal Mn, Co ions on B-site and their Redox property an the important factors influencing the NO-selectivity in ammonia oxidation. The NO-selectivity is related to the redox ability of Mn3+
Resumo:
The absorption spectra of Er:YAG (YAG, yttrium-aluminium-garnet) crystals containing different concentrations of the trivalent erbium ion were measured and the spectral intensity parameters were calculated from these experimental spectra using the Judd-Ofelt model. The results indicate that the phenomenological intensity parameters, OMEGA(lambda) (lambda = 2, 4 and 6), vary as a function of the concentration of the Er3+ ion in the Er:YAG crystal, but no variation in the fluorescence-branching ratios as a function of the concentration of the Er3+ ion is found. An empirical formula is proposed to describe the relationship between the spectral intensity parameters and the Er3+ ion concentration in the Er:YAG crystal. The spectral intensity parameters exhibit a maximum in Er:YAG crystals containing about 1-1.5 at.% Er3+ ion. The effect of the Er3+ ion concentration on the spectral intensity parameters may be attributed to the inhomogeneous lattice distortion in the cell of the Er:YAG crystal caused by the dopant erbium ions.
Resumo:
The type of oxygen species in perovskite-type oxides LaMnyCo1-yO3 (y = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) has been studied by means of XRD, XPS and TPD. The catalytic activity in ammonia oxidation was also investigated. It was found that there were three desorption peaks in TPD curve corresponding to three types of oxygen species (alpha, beta, beta'). The desorption temperatures were 293 K less-than-or-equal-to T(alpha) less-than-or-equal-to 773 K, 773 K less-than-or-equal-to T(beta) less-than-or-equal-to K and T(beta') greater-than-or-equal-to 1073 K respectively. The relationship among the composition, structure and the catalytic property of.the catalyst was correlated and could be explainned with a model based on solid defect reaction and the interaction between Co and Mn ions. The adsorption strength and quantity of a oxygen are proportional to the catalytic activity. The, result indicates that the synergetic effect between B-site ions seems to the benefit of the ammonis oxidation reaction.
Resumo:
The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae were investigated. In addition, the seasonal variation of inorganic elements in Sargassum kjellmanianum was also studied. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Ammonia-oxidizing archaea (AOA) have recently been found to be potentially important in nitrogen cycling in a variety of environments, such as terrestrial soils, wastewater treatment reactors, marine waters and sediments, and especially in estuaries, where high input of anthropogenic nitrogen is often experienced. The sedimentary AOA diversity, community structure and spatial distribution in the Changjiang Estuary and the adjacent East China Sea were studied. Multivariate statistical analysis indicated that the archaeal amoA genotype communities could be clustered according to sampling transects, and the station located in an estuarine mixing zone harboured a distinct AOA community. The distribution of AOA communities correlated significantly with the gradients of surface-water salinity and sediment sorting coefficient. The spatial distribution of putative soil-related AOA in certain sampling stations indicated a strong impact of the Changjiang freshwater discharge on the marine benthic microbial ecosystem. Besides freshwater, nutrients, organic matter and suspended particles, the Changjiang Diluted Water might also contribute to the transport of terrestrial archaea into the seawater and sediments along its flow path.
Resumo:
The passive northern continental margin of the South China Sea is rich in gas hydrates, as inferred from the occurrence of bottom-simulating reflectors (BSR) and from well logging data at Ocean Drilling Program (ODP) drill sites. Nonetheless, BSRs on new 2D multichannel seismic reflection data from the area around the Dongsha Islands (the Dongsha Rise) are not ubiquitous. They are confined to complex diapiric structures and active fault zones located between the Dongsha Rise and the surrounding depressions, implying that gas hydrate occurrence is likewise limited to these areas. Most of the BSRs have low amplitude and are therefore not clearly recognizable. Acoustic impedance provides information on rock properties and has been used to estimate gas hydrate concentration. Gas hydrate-bearing sediments have acoustic impedance that is higher than that of the surrounding sediments devoid of hydrates. Based on well logging data, the relationship between acoustic impedance and porosity can be obtained by a linear regression, and the degree of gas hydrate saturation can be determined using Archie's equation. By applying these methods to multichannel seismic data and well logging data from the northern South China Sea, the gas hydrate concentration is found to be 3-25% of the pore space at ODP Site 1148 depending on sub-surface depth, and is estimated to be less than values of 5% estimated along seismic profile 0101. Our results suggest that saturation of gas hydrate in the northern South China Sea is higher than that estimated from well resistivity log data in the gas hydrate stability zone, but that free gas is scarce beneath this zone. It is probably the scarcity of free gas that is responsible for the low amplitudes of the BSRs.
Resumo:
To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.
Resumo:
For higher concentration of inclusions, an effective medium approximation (EMA) method is used to investigate the bulk effective response of weakly nonlinear composites, which are subject to the constitutive relation of electric displacement and electric field, D-alpha = epsilon E-alpha + chi(alpha)|E|(2) E. As an example of three dimensions, under the external AC and DC electric fields E-app = E-a (1 + sin omega t), we have derived the general effective nonlinear response of composites by the EMA method for higher concentration of spherical inclusions. Furthermore, the effective nonlinear responses at harmonics are predicted.
Resumo:
铜管一直是电厂凝汽器的主要应用管材,但由于其抗冲刷和抵御污染物腐蚀的能力差,特别不耐氨蚀,美国和欧洲大量使用不锈钢管替代铜管作为冷凝管,然而不锈钢管在我国的运用仅处于初步阶段。 常使用锌、铝阳极对铜管进行牺牲阳极保护,然而存在着电位差过大、阳极溶解过快的问题。铁基牺牲阳极与铜电位差适当、来源广泛、价格便宜,在一些工程上有所应用,但是目前针对铁基牺牲阳极的理论研究报道很少。 本文选用紫铜管、304不锈钢管作为实验用管材,首先运用实验室全浸实验、极化曲线和电化学阻抗研究了二者在海水和淡水中的腐蚀性能以及CO2、溶解氧对其腐蚀的影响。结果表明:CO2会加速二者的腐蚀,溶解氧却对它们的腐蚀影响不同,促进铜管的腐蚀却抑制不锈钢管的腐蚀;随浸泡时间的延长,紫铜管由于表面产物膜的生成耐蚀性提高,304不锈钢管的耐蚀性却降低;淡水中,304不锈钢管和紫铜管都具有很好的耐蚀性能。随后,运用失重法和极化曲线对比研究了紫铜管、304不锈钢管的氨蚀性能,运用SEM分析和电化学阻抗研究了紫铜在不同浓度氨溶液中的腐蚀机理。发现,304不锈钢管的耐氨蚀能力远远好于铜管;溶解氧是影响氨蚀的关键因素,其对二者氨蚀的影响也不同;紫铜管在低氨浓度和高氨浓度溶液中腐蚀机理和产物不同,低氨浓度时形成保护性的产物膜(CuO 和Cu(OH)2),高氨浓度时由活化溶解控制,生成可溶的[Cu (NH3)4]2+。 选用工业纯铁、35钢为牺牲阳极材料。恒电流实验结果表明它们具有良好的牺牲阳极性能;通过极化曲线和自腐蚀电位测试分析,认为将二者用于铜管牺牲阳极保护是可行的;实验室阴极保护效果测试表明,工业纯铁和35钢对紫铜管具有良好的保护效果,保护度达90%以上。
Resumo:
To study response to white spot syndrome virus (WSSV) under ammonia stress, Penaeus japonicus were exposed to 5 mg l(-1) ammonia-N and challenged orally with WSSV (NW). Controls consisted of an ammonia-N-exposed control group (N), a WSSV-challenged positive control group (W), and an untreated control group (control). Immune parameters measured were total haemocyte count (THC), haemocyte phagocytosis, plasma protein content and haemolymph enzymatic activities for prophenoloxidase (proPO), alkaline phosphatase (ALP), and nitric oxide synthase (NOS). THC and plasma protein had downward trends with time in all treatment groups (NW, N, and W) in contrast to the untreated control group (control). The percentage phagocytosis, NOS activity, and ALP and proPO activity of W and NW decreased initially then increased from 6 to 78 h (except for NOS and ALP, from 6 to 54 h) before declining thereafter until the end of the experiment. Compared with untreated controls (control), there was a downward trend for all measured parameters in the treatment groups (N, NW, and W), but the degree was W > NW > N. WSSV was detected at 78 h postchallenge in both W and NW. In conclusion, 5 mg l(-1) ammonia-N reduced the immunocompetence of P japonicus and may have decreased the virulence of WSSV (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In order to study the effects of different nitrogen source and concentration on the growth rate and fatty acid composition, a marine microalga Ellipsoidion sp. with a high content of eicosapentaenoic acid (EPA) was cultured in media with different nitrogen sources and concentrations. During the pre-logarithmic phase, the alga grew faster with ammonium as N source than with nitrate, but the reverse applied during the post-logarithmic phase. The alga grew poorly in N-free medium or medium with urea as the sole N source. In the same growth phase, ammonium medium resulted in higher yield of total lipid, but the EPA yield did not differ significantly different from that using nitrate medium. The maximum growth rate occurred in medium containing 1.28 mmol L-1 sodium nitrate, while maximum EPA and total lipid contents were reached at 1.92 mmol L-1, when EPA accounted for 27.9% total fatty acids. The growth rate kept stable when NH4Cl ranged from 0.64 to 2.56 mmol L-1, and the maximum content of total lipid and EPA occurred in the medium with 2.56 mmol L-1 NH4Cl. The EPA content was higher in the pre- than post-logarithmic phase, though the total lipid content was lower. The highest EPA content expressed as percent total fatty acid was 27.9% in nitrate medium and and 39.0% in ammonium medium.