177 resultados para 309901 Fertilisers and Agrochemicals (Application etc.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZSM-5 zeolites were synthesized in situ onto cordierite honeycombs by vapor phase transport (VPT) for the first time. The as-synthesized ZSM-5/cordierite honeycombs were impregnated with IrCl3 and tested for NOx reduction with a simulated exhaust gas as the reducing agent. Under the conditions of excess oxygen, the Ir/ZSM-S/cordierite monolith catalyst exhibited NO reduction of 73% at a temperature of 573 K and a space velocity of 20,000 h(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional Chinese medicine (TCM) is a great treasure of China, the analysis of which is an arduous task. The viewpoint that all chemical constituents of Chinese herbal complex prescription should be analyzed as a black box is elucidated for the first time. Intelligent multi-mode multi-column chromatographic system (IMMCC) with its hybrids is the basic method and HPLC Unified Method is the breakthrough for the black box analysis. Dang-Gui-Bu-Xue-Tang was selected as a typical TCM and a systematic separation method from non-aqueous mobile phase to pure water mobile phase was put forward in order to convert unknown sample to known sample. The a, c values and UV spectra of 66 components of Astragalus, 78 components of Angelica and 71 components of Dang-Gui-Bu-Xue-Tang were obtained. Intelligent optimization and peak identification method and software for complex samples were developed and the optimum multi-step multi-binary gradient curve of mobile phase for Astragalus was ascertained. The maximum error and minimum error of predicted retention time for all components of Astragalus are 8.62% and 0.05% respectively. All components of Astragalus were compared with those of Angelica and it is found that many components of Astragalus are the same as those of Angelica, while the contents of these components are different. Many components of Dang-Gui-Bu-Xue-Tang are also the same as those of Astragalus and Angelica with different contents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new nonadentate ligand, N, N, N-1, N-1-[2,6-bis(3'-aminomethyl-1 1'-pyrazolyl)-4-phenylpyridine]tetrakis(acetic acid) (BPTA) for a Tb3+ fluorescent complex was synthesized. The Tb3+ complex is strongly fluorescent, having a large fluorescence quantum yield of 1.00 and very long fluorescence lifetime of 2.681 ms in 0.05 M berate buffer of pH 9.1. Streptavidin (SA) was labeled with SPTA by using its succinimidyl monoester, and the BPTA-Tb3+-labeled SA was used in sandwich-type time-resolved fluoroimmunoassay (TR-FIA) of alpha -fetoprotein (AFP) and carcinoembryonic antigen (CEA) in human sera. The Tb3+-labeled SA was also used in competitive type TR-FIA of bensulfuron- methyl (BSM) in water. The detection limits of these assays are 42 pg/mL for AFP, 70 pg/mL for CEA, and 0.4 ng/mL for BSM. In addition, a new simultaneous measurement method for AFP and CEA in a human serum sample was developed by using 4,4'-bis(1 " ,1 " ,1 " ,2 " ,2 " ,3 " ,3 " -heptafluoro-4 " ,6 " -hexanedion-6 " -yl)chlorosulfo-o-terphenyl ((BHHCT)-Eu3+-labeled anti-AFP antibody, biotinylated anti-CEA antibody, and BPTA-Tb3+-labeled SA. The concentrations of AFP and CEA in 39 human serum samples were determined, and the results were compared with those of the independently determined AFP and CEA by TR-FIA with a single-label method. A good correlation was obtained with the correlation coefficients of 0.991 for AFP and 0.994 for CEA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, an in vitro multicellular tumor spheroid model was developed using microencapsulation, and the feasibility of using the microencapsulated. multicellular tumor spheroid (MMTS) to test the effect of chemotherapeutic drugs was investigated. Human MCF-7 breast cancer cells were encapsulated in alginate-poly-L-lysine-alginate (APA) microcapsules, and a single multicellular spheroid 150 mu m in diameter was formed in the microcapsule after 5 days of cultivation. The cell morphology, proliferation, and viability of the MMTS were characterized using phase contrast microscopy, BrdU-Iabeling, MTT stain, calcein AM/ED-2 stain, and H&E stain. It demonstrated that the MMTS was viable and that the proliferating cells were mainly localized to the periphery of the cell spheroid and the apoptotic cells were in the core. The MCF-7 MMTS was treated with mitomycin C (MC) at a concentration of 0.1, 1, or 10 times that of peak plasma concentration (ppc) for up to 72 h. The cytotoxicity was demonstrated. clearly by the reduction in cell spheroid size and the decrease in cell viability. The MMTS was further used to screen the anticancer effect of chemotherapeutic drugs, treated with MC, adriamycin (ADM) and 5-fluorouracil (5-FU) at concentrations of 0.1, 1, and 10 ppc for 24, 48, and 72 h. MCF-7 monolayer culture was used as control. Similar to monolayer culture, the cell viability of MMTS was reduced after treatment with anticancer drugs. However, the inhibition rate of cell viability in MMTS was much lower than that in monolayer culture. The MMTS was more resistant to anticancer drugs than monolayer culture. The inhibition rates of cell viability were 68.1%, 45.1%, and 46.8% in MMTS and 95.1%, 86.8%, and 91.6% in monolayer culture treated with MC, ADM, and 5-FU at 10 ppc for 72 h, respectively. MC showed the strongest cytotoxicity in both MMTS and monolayer, followed by 5-FU and ADM. It demonstrated that the MMTS has the potential to be a rapid and valid in vitro model to screen chemotherapeutic drugs with a feature to mimic in vivo three-dimensional (3-D) cell growth pattern.