151 resultados para small-angle scattering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the subject of oil and gas exploration, migration is an efficacious technique for imagining structures underground. Wave-equation migration (WEM) dominates over other migration methods in accuracy, despite of higher computational cost. However, the advantages of WEM will emerge as the progress of computer technology. WEM is sensitive to velocity model more than others. Small velocity perturbations result in grate divergence in the image pad. Currently, Kirrchhoff method is still very popular in the exploration industry for the reason of difficult to provide precise velocity model. It is very urgent to figure out a way to migration velocity modeling. This dissertation is mainly devoted to migration velocity analysis method for WEM: 1. In this dissertation, we cataloged wave equation prestack depth migration. The concept of migration is introduced. Then, the analysis is applied to different kinds of extrapolate operator to demonstrate their accuracy and applicability. We derived the DSR and SSR migration method and apply both to 2D model. 2. The output of prestack WEM is in form of common image gathers (CIGs). Angle domain common image gathers (ADCIGs) gained by wave equation are proved to be free of artifacts. They are also the most potential candidates for migration velocity analysis. We discussed how to get ADCIGs by DSR and SSR, and obtained ADCIGs before and after imaging separately. The quality of post stack image is affected by CIGs, only the focused or flattened CIGs generate the correct image. Based on wave equation migration, image could be enhanced by special measures. In this dissertation we use both prestack depth residual migration and time shift imaging condition to improve the image quality. 3. Inaccurate velocities lead to errors of imaging depth and curvature of coherent events in CIGs. The ultimate goal of migration velocity analysis (MVA) is to focus scattered event to correct depth and flatten curving event by updating velocities. The kinematic figures are implicitly presented by focus depth aberration and kinetic figure by amplitude. The initial model of Wave-equation migration velocity analysis (WEMVA) is the output of RMO velocity analysis. For integrity of MVA, we review RMO method in this dissertation. The dissertation discusses the general ideal of RMO velocity analysis for flat and dipping events and the corresponding velocity update formula. Migration velocity analysis is a very time consuming work. Respect to computational convenience, we discus how RMO works for synthetic source record migration. In some extremely situation, RMO method fails. Especially in the areas of poorly illuminated or steep structure, it is very difficult to obtain enough angle information for RMO. WEMVA based on wave extrapolate theory, which successfully overcome the drawback of ray based methods. WEMVA inverses residual velocities with residual images. Based on migration regression, we studied the linearized scattering operator and linearized residual image. The key to WEMVA is the linearized residual image. Residual image obtained by Prestack residual migration, which based on DSR is very inefficient. In this dissertation, we proposed obtaining residual migration by time shift image condition, so that, WEMVA could be implemented by SSR. It evidently reduce the computational cost for this method.