198 resultados para reservoir prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1970s, igneous reservoirs such as Shang741, Bin674 and Luol51 have been found in Jiyang depression, which are enrichment and heavy-producing. Showing good prospect of exploration and development, igneous reservoirs have been the main part of increasing reserves and production in Shengli oilfield. As fracture igneous reservoir being an extraordinary complex concealed reservoir and showing heavy heterogeneity in spatial distribution, the study of recognition, prediction, formation mechanism and the law of distribution of fracture is essential to develop the reservoir. Guided by multiple discipline theory such as sedimentology, geophysics, mineralogy, petroleum geology, structural geology and reservoir engineering, a set of theories and methods of recognition and prediction of fractured igneous rock reservoir are formed in this paper. Rock data, three-dimensional seismic data, log data, borehole log data, testing data and production data are combined in these methods by the means of computer. Based on the research of igneous rock petrography and reservoir formation mechanism, emphasized on the assessment and forecast of igneous rock reservoir, aimed at establishing a nonhomogeneity quantification model of fractured igneous rock reservoir, the creativity on the fracture recognition, prediction and formation mechanism are achieved. The research result is applied to Jiyang depression, suggestion of exploration and development for fractured igneous rock reservoir is supplied and some great achievement and favourable economic effect are achieved. The main achievements are gained as follows: 1. The main facies models of igneous rock reservoir in JiYang depression are summarized. Based on data and techniques of seism, well log and logging,started from the research of single well rock facies, proceeded by seismic and log facies research, from point to line and line to face, the regional igneous facies models are established. And hypabyssal intrusion allgovite facies model, explosion volcaniclastic rock facies model and overfall basaltic rocks facies model are the main facies models of igneous rock reservoir in JiYang depression. 2. Four nonhomogenous reservoir models of igneous reservoirs are established, which is the base of fracture prediction and recognition. According to characteristics of igneous petrology and spatial types of reservoir, igneous reservoirs of Jiyang depression are divided into four categories: fractured irruptive rock reservoir, fracture-pore thermocontact metamorphic rock and irruptive rock compound reservoir, pore volcanic debris cone reservoir and fracture-pore overfall basaltic rock reservoir. The spatial distribution of each model's reservoir has its features. And reservoirs can be divided into primary ones and secondary ones, whose mechanism of formation and laws of distribution are studied in this paper. 3. Eight geologic factors which dominate igneous reservoirs are presented. The eight geologic factors which dominates igneous reservoirs are igneous facies, epigenetic tectonics deformation, fracture motion, intensity of intrusive effect and adjoining-rock characters, thermo-contact metamorphic rock facies, specific volcano-tectonic position, magmatic cyclicity and epigenetic diagenetic evolution. The interaction of the eight factors forms the four types nonhomogenous reservoir models of igneous reservoirs in Jiyang depression. And igneous facies and fracture motion are the most important and primary factors. 4. Identification patterns of seismic, well log and logging facies of igneous rocks are established. Igneous rocks of Jiyang depression show typical reflecting features on seismic profile. Tabular reflection seismic facies, arc reflection seismic facies and hummocky or mushroom reflection seismic facies are the three main facies. Logging response features of basic basalt and diabase are shown as typical "three low and two high", which means low natural gamma value, low interval transit-time, low neutron porosity, high resistivity and high density. Volcaniclastic rocks show "two high and three low"-high neutron porosity, high interval transit-time, low density, low-resistance and low natural gamma value. Thermo-contact metamorphic rocks surrounding to diabase show "four high and two low" on log data, which is high natural gamma value, high self-potential anomaly, high neutron porosity, high interval transit-time and low density and low-resistance. Based on seismic, well log and logging data, spatial shape of Shang 741 igneous rock is described. 5. The methods of fracture prediction and recognition for fractured igneous reservoir are summarized. Adopting FMI image log and nuclear magnetic resonance log to quantitative analysis of fractured igneous reservoir and according to formation mechanism and shape of fracture, various fractures are recognized, such as high-angle fracture, low-angle fracture, vertical fracture, reticulated fracture, induced fracture, infilling fracture and corrosion vug. Shang 741 intrusive rock reservoir can be divided into pore-vug compound type, pore fracture type, micro-pore and micro-fracture type. Physical properties parameters of the reservoir are computed and single-well fracture model and reservoir parameters model are established. 6. Various comprehensive methods of fracture prediction and recognition for fractured igneous reservoir are put forward. Adopting three-element (igneous facies, fracture motion and rock bending) geologic comprehensive reservoir evaluation technique and deep-shallow unconventional laterolog constrained inversion technique, lateral prediction of fractured reservoir such as Shang 741 is taken and nonhomogeneity quantification models of reservoirs are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development petroleum geology has made people from studying and studying and predicting in statically and respectively the pool-forming conditions of an area such as oil source bed, reservoir, overlying formation, migration, trap and preservation, etc. to regarding these conditions as well as roles of generation, reservation and accumulation as an integrated dynamic evolution development system to do study .Meanwhile apply various simulating means to try to predict from quantitative angle. Undoubtedly, the solution of these questions will accumulate exploration process, cut down exploration cost and obtain remarkable economic and social benefits. This paper which take sedimentology ,structural geology and petroleum geology as guides and take petroleum system theory as nucleus and carry out study thinking of beginning with static factor and integration of point and face as well as regarding dynamic state factor as factor and apply study methods of integration of geology, Lab research and numerical modeling proceed integrated dissect and systematic analysis to GuNan-SanHeCun depression. Also apply methods of integration of sequence stratigraphy, biostratigraphy, petrostratigraphy and seismic data to found the time-contour stratigraphic framework and reveal time-space distribution of depositional system and meantime clarify oil-source bed, reservoir and overlying distribution regular patterns. Also use basin analysis means to study precisely the depositional history, packed sequences and evolution. Meanwhile analyze systematically and totally the fracture sequence and fault quality and fault feature, study the structural form, activity JiCi and time-space juxtaposion as well as roles of fault in migration and accumulation of oil and gas of different rank and different quality fault. Simultaneously, utilize seismic, log, analysis testing data and reservoir geology theory to do systematic study and prediction to GuNan-SanHeCun reservoir, study the reservoir types macroscopic distribution and major controlling factors, reservoir rock, filler and porosity structural features as well as distribution of reservoir physical property in 3D space and do comprehensive study and prediction to major controlling and influential factors of reservoir. Furthermore, develop deepingly organic geochemistry comprehensive study, emphasis on two overlaps of oil source rock (ESI, ES3) organic geochemistry features, including types, maturity and spatial variations of organic matter to predict their source potential .Also apply biological marks to proceed oil-to-source correlation ,thereby establish bases for distribution of petroleum system. This study recover the oil generation history of oil source rocks, evaluate source and hydrocarbon discharge potential ,infer pool-forming stages and point out the accumulation direction as well as discover the forming relations of mature oil-source rock and oil reservoir and develop research to study dynamic features of petroleum system. Meanwhile use systematic view, integrate every feature and role of pool forming and the evolution history and pool-forming history, thereby lead people from static conditions such as oil source bed, reservoir, overlying formation, migration, trap and preservation to dynamically analyzing pool-forming process. Also divide GuNan-SanHeCun depression into two second petroleum system, firstly propose to divide second petroleum system according to fluid tress, structural axis and larger faults of cutting depression, and divide lower part of petroleum system into five secondary systems. Meanwhile establish layer analysis and quantitative prediction model of petroleum model, and do quantitative prediction to secondary petroleum system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper builds the model of oil accumulation and achieves the prediction of exploration goal. It uses multiple subject means, the ways of synthetic research and the viewpoint of analyzing genesis, with the academic guidance of sedimentology, structural geology, petroleum geology and geochemistry, the basis of strata sequence frame and structural frame, the frame of "four history" - the burying history, the structural history, the filling history and the evolving history of oil, the masterstroke of hydrocarbon's generation, migration and accumulation, the aim of revealing the genetic relation between mature source rock and oil reservoir in space and time. Some achievements and viewpoints in this study are following. 1. It is proposed that the structural evolution in this area had many periods, and the structural movement of the Xiazijie group telophase formed the structural pattern for the first time. 2. The character of strata sequence in this area is divided by the character of episodic cycle firstly. The study of dividing the facies of single well and the facies of well tie is based on the data of single well. The character of sedimentary facies is con-structed initially. 3. It is believed that Jiamuhe group is the main source rock, which can supply considerable oil and gas resources for the first time. Some criterions of source rock such as the type ,the abundance in Jiamuhe group are analysed. Using the thermal history of source rock, we drawn a conclusion that the original type of source rock in Jiamuhe group is II_1-III, and the abundance achived the level of good source rock, and this set of source rock had contributed to this area. 4. The reservoir strata in this area are assessed and analysed with the reservoir evaluation. There are multi-type reservoirs, such as volcanic lava facies, sedimentary clast facies, continental belch facies. The physical property in reservoir strata is characterized by low porosity and low permeability. The study of diagenetic stage show that the diageneses in Jiamuhe group is A-Bsubage, and the reservoir room is mainly secondary corroded hollow and cleft. 5. The synthetic research on oil system in Jiamuhe group is made for the first time. The type of petroleum system is divided , and we consider that the petroleum system of Jiamuhe group is at the reliable rank. There are two critical time in oil accumulation through studying the critical time of oil accumulation : the early generation of hydrocarbon is oil, and the later is gas. 6. The mechanism of accumulation is analysed. We consider that the accu-mulation of oil in this area has many periods, and the early generated hydrocarbon is expeled by the later , and formed the character of zonal distribution in planar. 7. A bran-new model of oil and gas is proposed. Beneficial enrichment area of oil and gas is analyzed, which can be divided into three sections: Section I can be divided into two sections: I_1 and I_2. The lower subgroup of Jiamuhe is covered by the triassic layer of I_1 section. Fault zone and near the foot wall of fault are charactered with thick phase belt. Then the cover capability in this area is relatively poor, oil can migrate into triassic layer by vertical or lateral migration , and forms I_1 Kelamayi triassic oil pool consequently. The lower subgroup of Jiamuhe is covered by the triassic layer of I_2 section ,which is charactered with thin phase belt. Then the cover capability in this area is relatively good, and forms I_1 Kelamayi triassic oil pool consequently. Section II can be divided into two sections: II_1-I_(I~2). The cover of Jiamuhe group in section II_1 is the low resistivity segment in Wuerhe group, which has thin lithology and poor porosity and permeability. Oil and gas in Jiamuhe group can be covered to form beneficial accumulation area. There are some wells in this area, such as Ke 007 well, 561 well. The thick phase belt layer of Wuerhe high resistivity segment in section II_2 has unconformable relation with Jiamuhe group. The cover ability of the high resistivity segment is poor, petroleum in Jiamuhe can migrate into Wuerhe layer vertically. This area is the beneficial area for accumulating petroleum in Wuerhe layer. there are some wells in this area, such as Ke 75 well, Ke 76 well, Ke 77 well, Ke 78 well, Ke 79 well. Section III can also be divided into two sections: III_1 and III_2. Wuerhe group in section III_1 has unconformable relation with Jiamuhe group. There is thick lithology and poor cover in Wuerhe group, but the strata sequence evolution character of upper subgroup in Jiamuhe group has determined that it has lateral and vertical cover ability. thus, this area is petroleum abundant belt of jiamuhe group, which has the trap. Section III_2 is an area controled by wedgeout of Fengcheng group, Fengcheng group in this area has quite thick lithology so that It has beneficial resevoir phase belt. It can accumulate oil in itself or accept some oil in Jiamuhe group. Jiamuhe group has some oil accumulation condition in this area. Thus, section III_2 is jiamuhe-Fengcheng multiple petroleum accumulation belt, such as Ke 80 well. 8. The goal of exploration is suggested: Depositional trap or combination trap is the important aspect in later exploration. Both types of traps are the goal of the next drilling: Fault block trap in the east of 576 well and the NO. 2 fault block trap in the north of Ke 102 well It is suggested that we should study the law of oil and gas in Jiamuhe group and enhance the study of combination in forming reservoir and trap scale. We do some lithology forecast and reservoir diatropic forecast in order to know the area of oil and gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic prediction of complex reservoir development is one of the important research contents of dynamic analysis of oil and gas development. With the increase development of time, the permeabilities and porosities of reservoirs and the permeability of block reservoir at its boundaries are dynamically changing. How to track the dynamic change of permeability and porosity and make certain the permeability of block reservoir at its boundary is an important practical problem. To study developing dynamic prediction of complex reservoir, the key problem of research of dynamic prediction of complex reservoir development is realizing inversion of permeability and porosity. To realize the inversion, first of all, the fast forward and inverse method of 3-dimension reservoir simulation must be studied. Although the inversion has been widely applied to exploration and logging, it has not been applied to3-dimension reservoir simulation. Therefore, the study of fast forward and inverse method of 3-dimension reservoir simulation is a cutting-edge problem, takes on important realistic signification and application value. In this dissertation, 2-dimension and 3-dimension fluid equations in porous media are discretized by finite difference, obtaining finite difference equations to meet the inner boundary conditions by Peaceman's equations, giving successive over relaxation iteration of 3-dimension fluid equations in porous media and the dimensional analysis. Several equation-solving methods are compared in common use, analyzing its convergence and convergence rate. The alternating direction implicit procedure of 2-dimension has been turned into successive over relaxation iteration of alternating direction implicit procedure of 3-dimension fluid equations in porous media, which possesses the virtues of fast computing speed, needing small memory of computer, good adaptability for heterogeneous media and fast convergence rate. The geological model of channel-sandy reservoir has been generated with the help of stochastic simulation technique, whose cross sections of channel-sandy reservoir are parabolic shapes. This method makes the hard data commendably meet, very suit for geological modeling of containing complex boundary surface reservoir. To verify reliability of the method, theoretical solution and numerical solution are compared by simplifying model of 3-dimension fluid equations in porous media, whose results show that the only difference of the two pressure curves is that the numerical solution is lower than theoretical at the wellbore in the same space. It proves that using finite difference to solve fluid equations in porous media is reliable. As numerical examples of 3-dimension heterogeneous reservoir of the single-well and multi-well, the pressure distributions have been computed respectively, which show the pressure distributions there are clearly difference as difference of the permeabilities is greater than one order of magnitude, otherwise there are no clearly difference. As application, the pressure distribution of the channel-sandy reservoir have been computed, which indicates that the space distribution of pressure strongly relies on the direction of permeability, and is sensitive for space distributions of permeability. In this dissertation, the Peaceman's equations have been modified into solving vertical well problem and horizontal well problem simultaneously. In porous media, a 3D layer reservoir in which contain vertical wells and horizontal wells has been calculated with iteration. For channel-sandy reservoir in which there are also vertical wells and horizontal wells, a 3D transient heterogeneous fluid equation has been discretized. As an example, the space distribution of pressure has been calculated with iteration. The results of examples are accord with the fact, which shows the modification of Peaceman's equation is correct. The problem has been solved in the space where there are vertical and horizontal wells. In the dissertation, the nonuniform grid permeability integration equation upscaling method, the nonuniform grid 2D flow rate upscaling method and the nonuniform grid 3D flow rate upscaling method have been studied respectively. In those methods, they enhance computing speed greatly, but the computing speed of 3D flow rate upscaling method is faster than that of 2D flow rate upscaling method, and the precision of 3D flow rate upscaling method is better than that of 2D flow rate upscaling method. The results also show that the solutions of upscaling method are very approximating to that of fine grid blocks. In this paper, 4 methods of fast adaptive nonuniform grid upscaling method of 3D fluid equations in porous media have been put forward, and applied to calculate 3D heterogeneous reservoir and channel-sandy reservoir, whose computing results show that the solutions of nonuniform adaptive upscaling method of 3D heterogeneous fluid equations in porous media are very approximating to that of fine grid blocks in the regions the permeability or porosity being abnormity and very approximating to that of coarsen grid blocks in the other region, however, the computing speed of adaptive upscaling method is 100 times faster than that of fine grid block method. The formula of sensitivity coefficients are derived from initial boundary value problems of fluid equations in porous media by Green's reciprocity principle. The sensitivity coefficients of wellbore pressure to permeability parameters are given by Peaceman's equation and calculated by means of numerical calculation method of 3D transient anisotropic fluid equation in porous media and verified by direct method. The computing results are in excellent agreement with those obtained by the direct method, which shows feasibility of the method. In the dissertation, the calculating examples are also given for 3D reservoir, channel-sandy reservoir and 3D multi-well reservoir, whose numerical results indicate: around the well hole, the value of the sensitivity coefficients of permeability is very large, the value of the sensitivity coefficients of porosity is very large too, but the sensitivity coefficients of porosity is much less than the sensitivity coefficients of permeability, so that the effect of the sensitivity coefficients of permeability for inversion of reservoir parameters is much greater than that of the sensitivity coefficients of porosity. Because computing the sensitivity coefficients needs to call twice the program of reservoir simulation in one iteration, realizing inversion of reservoir parameters must be sustained by the fast forward method. Using the sensitivity coefficients of permeability and porosity, conditioned on observed valley erosion thickness in wells (hard data), the inversion of the permeabilities and porosities in the homogeneous reservoir, homogeneous reservoir only along the certain direction and block reservoir are implemented by Gauss-Newton method or conjugate gradient method respectively. The results of our examples are very approximating to the real data of permeability and porosity, but the convergence rate of conjugate gradient method is much faster than that of Gauss-Newton method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central uplift in the Huimin depression is famous for its large amounts of faults and small-scale fault-block area, and it is the famed typical complicated fault-block group oil & gas field in the whole world. After many years of rolling exploration and exploitation, many complex oil &gas field have been discovered in the central uplift, and won the splendent fruit. With the gradual deepening and development of the rolling exploitation, the exploration faces more and more difficulties. Therefore, it is important to reveal the forming mechanism and distributing rule of the complex fault-block reservoir, and to realize the forecast of the complex fault-block reservoir, sequentially, expedite the exploration step. This article applies the new multi-subject theory, method and technique such as structure geometry, kinematics, dynamics, structural stress field, fluid potential field, well logging record and constrained inversion of seismic records, coherence analysis, the seal mold and seal history of oil-bounded fault etc, and try to reveal the forming mechanism and distributing law of the complex fault-block reservoir, in result, implements the forecast of the fault-block reservoir and the remaining oil distributing. In order to do so, this article synthetically carries out structural estimate, reservoir estimate, fault sealing history estimate, oil-bearing properties estimate and residual. This article also synthetically researches, describes and forecast the complex fault-block in Huimin depression by use of the techniques, e.g. seismetic data post-stack processing technique, multi-component demarcating technique, elaborate description technique for the fault-block structure, technique of layer forecasting, fault sealing analysis technique, comprehensive estimate technique of fault-block, comprehensive analysis and estimate technique of remaining oil etc. The activities of the faults varies dramatically in the Huimin depression, and most of the second-class and the third-class faults are contemporaneous faults, which control the macroscopical distribution of the reservoir in the Huimin depression. The fourth-class faults cause the complication between the oil & gas among the fault-blocks. The multi-period strong activities of the Linyi fracture resulted in the vertical migration of large amount of oil & gas along with the faults. This is the main reason for the long vertical distribution properties near the Linyi fracture in the Huimin depression. The sealing ability of the fault is controlled by the property,size and direction of the main stress, the contact relationship of the both sides of the fault, the shale polluting factor, and the configuration relationship between the fault move period and the migration period of oil & gas. The article suggest four fault-sealing modes in the research zone for the first time, which establishes the foundation for the further forecast of the complex fault-block reservoir. Numerical simulation of the structural stress field reveals the distribution law and the evolvement progress of the three-period stress field from the end of the Dongying period to the Guantao period to nowadays. This article puts forward that the Linyi and Shanghe regions are the low value of the maximum main stress data. This is combined with the fault sealing history estimate, then multi-forming-reservoir in the central uplift is put forward. In the Shanghe oilfield, the article establishes six reservoir geological modes and three remaining oil distributing modes(the plane, the inside layer and the interlayer), then puts forward six increase production measure to enhance the remaining oil recovery ratio. Inducting the exploitation of oilfield, it wins notable economic effects and social effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in Gubei depression, this paper builds high resolution sequence stratigraphic structure, sedimentary system, sandbody distribution, the effect of tectonic in sequence and sedimentary system evolution and model of tectonic-lithofacies. The pool formation mechanism of subtle trap is developed. There are some conclusions and views as follows. 1.With the synthetic sequence analysis of drilling, seismic, and well log, the highly resolution sequence structure is build in Gubei depression. They are divided two secondary sequences and seven three-order sequences in Shahejie formation. They are include 4 kinds of system traces and 7 kinds of sedimentary systems which are alluvial fan, under water fan, alluvial fan and fan-delta, fan-delta, lacustrine-fan, fluvial-delta-turbidite, lakeshore beach and bar, and deep lake system. Sandbody distribution is show base on third order sequence. 2.Based on a lot of experiment and well log, it is point out that there are many types of pore in reservoir with the styles of corrosion pore, weak cementing, matrix cementing, impure filling, and 7 kinds of diagenetic facies. These reservoirs are evaluated by lateral and profile characteristics of diagenetic facies and reservoir properties. 3.The effect of simultaneous faulting on sediment process is analyzed from abrupt slope, gentle slope, and hollow zone. The 4 kinds of tectonic lithofacies models are developed in several periods in Gubei depression; the regional distribution of subtle trap is predicted by hydro accumulation characteristics of different tectonic lithofacies. 4.There are 4 types of compacting process, which are normal compaction, abnormal high pressure, abnormal low pressure and complex abnormal pressure. The domain type is normal compaction that locates any area of depression, but normal high pressure is located only deep hollow zone (depth more than 3000m), abnormal low pressures are located gentle slope and faulted abrupt slope (depth between 1200~2500m). 5.Two types dynamic systems of pool formation (enclosed and partly enclosed system) are recognized. They are composed by which source rocks are from Es3 and Es4, cap rocks are deep lacustrine shale of Esl and Es3, and sandstone reservoirs are 7 kinds of sedimentary system in Es3 and Es4. According to theory of petroleum system, two petroleum systems are divided in Es3 and Es4 of Gubei depression, which are high or normal pressure self-source system and normal or low pressure external-source system. 6.There are 3 kinds of combination model of pool formation, the first is litholgical pool of inner depression (high or normal pressure self-source type), the second is fault block or fault nose pool in marginal of depression (normal type), the third is fault block-lithological pool of central low lifted block (high or normal pressure type). The lithological pool is located central of depression, other pool are located gentle or abrupt slope that are controlled by lithological, faulting, unconfirmed. 7.This paper raise a new technique and process of exploration subtle trap which include geological modeling, coring description and logging recognition, and well log constrained inversion. These are composed to method and theory of predicting subtle trap. Application these methods and techniques, 6 hydro objects are predicted in three zone of depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper belong to national "973" technological project undertaken by Shengli Oilfield. Work area is composed of turbidite reservoir of S212 and delta reservoir of S283 of Sheng2 unit in Shengtuo Oilfield that has a 36 years water injection development history. Change of the macroscopic, microscopic and filterational parameters and its mechanism have been studied in the 4 water-cut stages i.e. the primary, moderate, high and supper-high stage by using multi-disciplinary theories and approaches, computer techniques and physical simulation comprehensively. Dynamic reservoir models to different water-cut stages have been established. The study of forming mechanism and distribution of residual oil revealed the main types and spatial distribution of residual oil in different water-cut stages and the distribution mode has also been built up. Macroscopic, microscopic and filterational parameters selecting principle, optimizing and selecting standard, matching standard and laws and related database of various dynamic parameters in different water-cut stages have been established, which laid good basis for revealing reservoir macroscopic, microscopic and filterational parameters' dynamic change and residual oil distribution. The study indicated that in general, the macroscopic, microscopic and filterational parameters will slowly increase and become better in both shallow turbidite and delta reservoirs with the increasing of water cut, but different reservoirs have their own characteristics and change laws. Parameters of I~2 unit, whose petrophysical properties are better, increase more quickly than 8~3, whose petrophysical properties are more unfavorable. The changes was relatively quickly in high water-cut stage, while relatively slowly from primary to moderate and from high to supper-high water-cut stage. This paper firstly put forward that reservoir macroscopic, microscopic and filterational parameters are controlled by dynamic geological function of reservoir fluid, which is considered the major reason of reservoir parameters' dynamic changes and residual oil formation and distribution during reservoir development. Physical simulation of filterational parameters verified that forming mechanism and distribution of residual oil in different water-cut stages are also controlled by dynamic geological function of reservoir fluid. The idea of fluid geological function during reservoir development developed the theory of development geology, and has important practical values. This paper firstly constructed dynamic geological and mathematical models and five modes of residual oil distribution in Shengtuo Oilfield, and achieved four-dimensional forecast of residual oil distribution in different watercut stages. Dynamic changes and mechanism of macroscopic, microscopic and fliterational parameters of reservoir and their change process have been revealed. Forecast of residual oil distribution has been achieved by computers. This paper established the related theories, approaches and techniques for residual oil study, characterization and in different water-cut stages, and realized dynamic forecast of residual oil. It gained remarkable economic benefit and social effect in guiding field development. These theories and techniques had important meaningfulness for residual oil prediction in the terrestrial faulted basins not only in Shengli Oilfield but also in the east of China. Furthermore, this study has developed the theory of development geology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is the key project of SINOPEC at ninth five years period with a lot of work and very difficult, which the main object are the study of pool-forming mechanism, distribution rule and pool-forming model of complex secondary pool at Dongying formation in high mature exploration area, and building theories and methods of research, description and prediction of secondary fault block pool. This paper apply comprehensively with various theories, method and techniques of geology, seismic, well log, reservoir engineering, meanwhile apply with computer means, then adopt combination of quality and quantitative to develop studies of pool-forming mechanism, model and pool prediction of fault block pool. On the based of stretch, strike-slip, reversal structure theories, integrated the geometry, kinematics, and dynamics of structure, it is show that the structure framework, the structure evolve, formation mechanism of central uplift belt of Dongying depression and control to formation and distribute of secondary complex fault block pool. The opening and sealing properties, sealing mechanism and sealing models of pool-controlling fault are shown by using quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The sealing history of controlling fault, formation mechanism and distribute the regulation are established by combining together with bury history, structure evolve history, fault growth history stress field evolve history, which can be guide exploration and production oil field. It were bring up for the first time the dynamics mechanism of Dongying central uplift which were the result of compound tress field of stretch, strike-slip and reversal, companion with reversal drag structure, arcogenesis of paste and salt beds. The dual function of migration and sealing of fault were demonstrated in the research area. The ability of migration and sealing oil of pool-controlling fault is controlled by those factors of style of fault combination, activity regulation and intensity of fault at the period of oil migration. The four kinds of sealing model of pool-controlling fault were established in the research area, which the sealing mechanism of fault and distribution regulation of oil in time and space. The sealing ability of fault were controlled by quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The fuzzy judge of fault sealing is the base of prediction of secondary pool. The pool-forming model of secondary was established in the research area, which the main factors are ability migration and sealing. The transform zone of fault, inner of arc fault and the compound area of multi fault are enrichment region of secondary pool of Dongying formation, which are confirm by exploration with economic performance and social performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of the highly productive Renqiu buried hill reservoir in Bohai Bay Basin in 1975 started the high tide of finding buried hill reservoirs in China and their research. As the advance of E&P technologies, the study of buried hill reservoir in China had a qualitative leap. The reservoir description and some other aspects of development have reached or approached to the international leading level. However, some core techniques for reservoir study such as structure & faulting system study, formation prediction and connection study and heterogeneous model's construction could not completely carry out the quantitative or accurate reservoir description, e. g. the areal distribution of porosity, permeability and oil saturation. Especially, the modeling for reservoir simulation is still wandering in the stage of simplicity. The inaccurate understanding of geology could not derive 3D heterogeneous geological model that can reveal the actual underground situation thus could not design practical and feasible oilfield development plan. Therefore, the problems of low oil recovery rate, low recovery factor and poor development effectiveness have not been solved. The poor connection of the reservoir determined that waterflooding could not get good development effect and the production had to depend on the reservoir elastic energy, and this will bring big difficulty for development modification and improvement of oil recovery. This study formed a series of techniques for heterogeneous model research that can be used to construct heterogeneous model consistent with the reservoir geology. Thus the development effectiveness, success ratio of drilling and percent of producing reserves can be enhanced. This study can make the development of buried hill reservoir be of high recovery rate and high effect. The achievements of this study are as follows: 1. Evaluated the resources, summarized the geological characteristics and carried out the reservoir classification of the buried hill reservoirs in Shengli petroliferous area; 2. Established the markers for stratigraphical correlation and formed the correlation method for complex buried hill reservoirs; 3. Analyzed the structural features of the buried hill reservoirs, finished the structure interpretation and study of faulting system using synthetic seismograms, horizontal slices and coherent analysis, and clarified structural development history of the buried hill reservoirs in Shengli petroliferous area; 4. Determined the 3 classes and 7 types of pore space and the main pore space type, the logging response characteristics and the FMI logging identified difference between artificial and natural fractures by the comprehensive usage of core analysis, other lab analyses, conventional logging, FMI logging and CMR logging; 5. Determined the factors controlled the growth of the fractures, vugs and cavities, proposed the main formation prediction method for buried hill reservoir and analyzed their technical principium and applicability, and formed the seismic method and process for buried hill reservoir description; 6. Established the reserve calculation method for buried hill reservoirs, i. e. the reserves of fractures and matrix are calculated separately; the recoverable reserves are calculated by decline method and are classified by the SPE criteria; 7. Studied restraining barriers and the sealing of the faults thus clarified the oil-bearing formations of the buried hill reservoirs, and verified the multiple reservoir forming theory; 8. Formed reasonable procedure of buried hill reservoir study; 9. Formed the 3 D modeling technology for buried hill reservoirs; 10. Studied a number of buried hill blocks on the aspects of reservoir description, reservoir engineering and development plan optimization based on the above research and the profit and social effect are remarkable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foundation of reservoir model and residual oil prediction have been the core of reservoir detailed description for improved oil production and enhanced oil recovery. The traditional way of sandstone correlation based on the geometrical similarity of well-logs which emphasizes "based on the cycle and correlating from larger to smaller" has shown its theoretical limits when explaining the correlating and the scale, geometry, continuity, connectivity of sandstones and the law of the reservoir property. It has been an urgent and difficult subject to find new theory and methods to solve the reservoir correlation and property prediction. It's a new way to correlate strata and found framework of reservoir through the process-response analysis in the base-level cycles. And it is also possible to analyze the reservoir property in reservoir framework. Taking the reservoir of zonation 6-10 in S3~2 of Pucheng Oil Field in Henan Province as an example, we founded the detailed reservoir stratigraphic framework through base-level correlation. In the strata frame, sediment distribution and its development are discussed based on sediment volume partitioning and facies differentiation analysis. Reservoir heterogeneities and its relation to base-level are also discussed. The analysis of primary oil distribution shows the base-level controlled oil distribution in reservoir. In this paper, subjects as following are discussed in detail. Based on the analysis of sedimentary structure and sedimentary energy, the facies model was founded. Founding stratigraphy framework through base level analysis In the studying zone, one long term cycle, 6 middle term cycles and 27 short term cycles was identified and correlated. 3 Predicting the property of reservoir for improving oil development The base level controlled the property of sandbody. The short and very short term cycle controlled the pattern of heterogeneities in sandbody, and the middle and long term cycle controlled the area and inter-layer heterogeneities. On the lower location of the middle and long term base level, the sandbody is well developed, with a wide area and large thickness, while on the high location of base level, there is an opposite reservoir character. 4 The studying of reservoir development response and oil distribution making a solid base for development adjustment Primary oil distribution is controlled by base level location. It tells that the sandbody on the high base level location was poor developed for its difficulty to develop. While on the low location of the base level, the sandbody is well developed for its relative easy to develop and dominant role in the development, but high residual oil for its high original oil content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas condensate reservoir research involves not only structure sediment reservoir liquid properties characterization but also the change of the temperature field, the change of the pressure field, the change of liquid phase and the reservoir sensitivity. To develop the gas condensate reservoir effectively .we must depict the static properties of the oil and gas system ,build exact and comprehensive parameter field, predict the rule of dynamic change and do the necessary reservoir characterization development plan dynamic prediction direct production. The MoBei Oil and Gas Field is the first gas condensate reservoirs which is found by the Xinjiang Oil Field Company in ZhunGaEr basin belly.it has deserved some knowledge after prospect evaluation, the MoBei Oil and Gas Field start development ,it is one of the important development blocks of Xinjiang Oil Field Company productivity constuction. During its development , it gradually appears some problems, such as complex oil and gas phase, great change of reservoir stretch .uncertain reservoir type and scale, controling its development strategy and plan difficultly. To deserve the high efficient development and long-term stable production of the gas condensate reservoir, it is necessary to characterize it systematically and form a suit of scientific development strategy. This thesis take the MoBei zone SanGongHe sand group reservoir as research object, applied advanced log techniques ,such as the nulear magnetism log ,MDT testing .etc. After comprehensive research of loging geology information, set up a suit of methods to identify oil gas water layer .these methods can identify the gas-oil level and the oil-water level. On the basis of reasonable development object system, according fine structure interpretation and structure modeling. build any oil water column height of the reservoir accurately. Through carefully analysis of the basic theory and method of reservoir seism prediction. optimize a reservoir inversion method .technique. software fitting the research region aiming strata, set up the GR field, porosity field, Rt field, impedence field .permeability field and initial oil saturation field, generating the base of quantity reservoir characterization. Discussing the characteristic of reservoir fluid and the movement and reallocating of muti-phase fluid in reservoir. And according the material of 100 soviet gas condensate reservoir ,build the recognition method and mode of gas condensate reservoir. Building the 3D geology model ,carry on the static and production evaluation, propose the development strategy and improve plan , provide the base of increasing reserves and advancing production and enriching the prospect development theory of the gas condensate reservoi

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim at the variousness and complexity of the spatial distribution of Remaining Oil in the fluvial and delta facies reservoir in paper. For example, in the La-Sa-Xing oilfield of Daqing, based on the research of the control factor and formation mechanization of block, single layer, interlayer and micromechanism, synthesizing the theories and methods of geology, well logging, reservoir engineering, artificial intelligence, physical simulation test , and computer multidisciplinary; Fully utilizing the material of geology, well logging, core well, dynamic monitor of oil and water well, and experimental analysis, from macro to micro, from quality to quantity, from indoor to workplace, we predicted the potentiality and distribution according to the four levels of Block, single layer, interlayer and micromechanism, and comprehensively summarized the different distribution pattern of remaining oil in the fluvial and delta facies reservoir This paper puts forward an efficient method to predict the remaining recoverable reserves by using the water flooding characteristic curve differential method and neutral network; for the first time utilizes multilevel fuzzy comprehensive judgment method and expert neutral network technology to predict the remaining oil distribution in the single layer? comprehensively takes advantage of reservoir flowing unit, indoor physical simulation test, inspection well core analysis and well-logging watered-out layer interpretation to efficiently predict the distribution of remaining oil; makes use of core analysis of different periods and indoor water driving oil test to study the micro distribution of remaining oil and the parameters varying law of reservoir substance properties, rock properties, wetting properties. Based on above, the remaining oil distribution predicting software is developed, which contains four levels of block, single layer, interlayer and micromechanism. This achievement has been used inLa-Sa-Xing oil field of Daqing and good results have been received.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Corporation's science and technology project. Although it is difficult, it has important theoretical and practical value. The study was aimed to reveal inhomogeneity of two kinds of reservoirs of fan-shaped delta and braided river by using new theories, new methods and new technology about 3-D model building and reservoir knowledge repository throughout the world, and to build reservoir knowledge repository and 3-D geological model which would predict the type of sand body forming reason and distribution rule in order to improve exploration result in Qiuling oil fields. Multi-discipline theories such as petroleum structure geology, reservoir geology, petroleum geology, sequence geology, logging geology, geomathematics and so on are used as guide. The information of geology, seism, logging and production test is combined. Outcrop area and overlap area are combined. By making full use of computer, stable structure, reservoir geometric shape, spatial distribution and inhomogeneity of bed of interest are investigated, described and characterized. Petroleum pool 3-D static geological model of reservoir knowledge repository was built. Sand body distribution was predicted. It has guided oil development, lowed the investment and improved development benefits. Several results are achieved as follows: (1) Strata framework of Sanjianfang group in Qiuling oil field has been established. (2) Geometric shape, spatial distribution and evolve rule of two different forming reason's reservoir of fan-shaped delta and braided river of Sanjianfang group in Qiuling oil field are discussed. (3) The two kinds of reservoirs have lower pore and permeability and very strong inhomogeneity. (4) Reservoir knowledge repository of two different forming reasons has been built of Sanjianfang group, which includes 5 geological knowledge sublibrary. (5) 3-D geological model of two kinds of forming reason's reservoirs has been built. (6) That same sequence instruction a simulation and probability field were used to predict sand body of Sanjianfang group was put forward. Coincidence rate is high after production test. It shows this method has great popularity value. (7) A set of theories, methods and technologies of knowledge repository of two kinds of reservoir of braided river and fan-shaped delta and 3-D geological model building were finished. (8) A set of theories, methods and technologies of investigating, describing, characterizing and predicting two kinds of oil pool were developed. It gets noticeable economic benefit after exploration. Theory and method about extrusion basin are developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is aimed to reveal macroscopic and microscopic anisotropism by using new theories, new methods and new technology. In order to reveal the forming mechanism and distribution pattern of remaining oil, flow units 4-dimension model and realistic model was established according the data over 20 years development of the Pucheng Oil field. Based on theories of multi-discipline subject, methods and technologies, by using correspondent 4-D data body and computer, combining quantity and quality study, static and development data, macroscopic and microscopic data, the two different geneses' reservoir, eg., braided delta and lake delta, are studied. The two different geneses' reservoir flow units models were established. Main achievement of this thesis are summarized as following: The standard of parameter optimization, identification and appreciation of two different geneses' reservoir were established. Based on the standard, the reservoir were classed into four flow units class as G,E,F and P. The flow unit static models of two different geneses' reservoir were established, and the relation of geometric shape, space distribution and macroscopic remaining oil was revealed. the flow units microscopic model were established, which tells that the changes of all the microscopic factor in the development. (4) Accordig BP arithmetic method, an adapt arithmetic method were designed, and the reservoir flow units were simulated based on the new method. (5) Reservoir realistic model of flow unit were established. Based on the model the microscopic development is simulated, which reveals the oil and water seepage in the reservoir and the mechanism of the microscopic oil formation. (6) The spatial residual oil distribution patterns were summarized. The remaided oil is mainly in the places as not being affected by the injected water, high part of the structures and the place near the sealed faults. There are 3 kinds and 9 distribution modes of microscopic remaining oil. The forming mechanism and distribution rule were pointed out. The study has developed a set of theories, technology and methods for flow units study, including flow units description, characterization and prediction. The study is also an improvement of the development geology theory in continental fault depression lake basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis show you seven interpretation models of erosion of MAs1+2 in the west of prospect and eroded gully of middle and east, form the interpretation technique how to built up eroded gully of the Ordovician top, according of the practical demand of oil-gas exploration in the ShanGanNing basin, using seismic information, combining well logging and well drilling data, Carefully analyzing geologic deposition background and well logging data, through a great quantity forward and inversion for geologic model and combination geologic model with seismic section. Related to research of reservoir absorption in the ShanGanNing basin, it firstly introduces PRONY transformation multidimensional filter. It can simultaneously express relationship of frequency and absorption decay coefficient, better than FUSAIPU analysis method; PRONY filter have obtain the better effect in the gas field of ZhenChuanBao in the ShanBei area after adopting PRONY filtering method to predict reservoir absorption, by analyzing fixed well and prediction of non-well drilling. In the ShanGanNing basin, general seismic inversion method can produce evident different results or misunderstanding because wave impedance and lithology, physical property, gas property are not sole, especially while have little impedance contrast and even have contract direction; the author carefully analyzes multi-parameter inversion technique, add natural gamma ray and natural potential and other parameter combined making model inversion method according of theory of seismic inversion and applying reservoir velocity and wave impedance information at last, we get the more directly reservoir physical property parameter, judging reservoir physical property is more exact. In accordance with geologic, seismic feature of Shan basin, the thesis conclude Ordovician system top erosion interpretation technology with ChangQing character, and reservoir thickness prediction technique combining inversion technique with wave character analysis, Reservoir physical property that is mainly absorption factor analysis and multi-parameter inversion and oil-gas prediction technology. These technologies obtain the better result in the oil-gas field exploration and have formed comprehensive research method and technology series with ShanGanNing character.